بتن ساز و بتن ریز

بتن ساز و بتن ریز


معرفی

بتن ساز و بتن ریز کسی است که بتواند از عهده خواندن نقشه های اجرایی بتن و جزئیات آن – ساختن بتن دستی و ماشینی – کنترل آرماتورها – قالب و صفحات اتصال بر اساس نقشه های اجرایی – بتن ریزی – متراکم کردن بتن – تسطیح بتن – بتن ریزی سازه های بتنی و ساختمانهای بلند مرتبه – بتن ریزی سازه های بتن با اختلاف سطح و سقف های شیب دار طبق نقشه و مشخصات اجرایی – بتن ریزی سقف های بتن آرمه در سازه های مختلف – بتن ریزی رادیه ژنرال – حمل و مونتاژ قطعات پیش ساخته بتن  تهیه نمونه های آزمایش بتن – مدیریت گروه های بتن ریز برآید.


نمونه وظایف
1. توانایی خواندن نقشه های اجرایی بتن و جزئیات آن
2. آشنایی با نقشه های اجرایی و جزئیات آن
3. نقشه های اجرایی ساختمانهای صنعتی
4. نقشه های اجرایی ساختمانهای مسکونی
5. نقشه های اجرایی انواع دیگر سازه های بتنی (آمفی تئاتر- بارانداز- سیلو- دودکش)
6. نقشه های اجرایی ساختمانهای تمیز هم سطح در طبقات
7. شناسایی اصول تشخیص علائم اختصاری نقشه ها
8. علائم اختصاری اتصالات قطعات پیش ساخته بتنی مسلح
9. توانایی باراندازی، حمل و انبار کردن مصالح بتن
10. آشنایی با مصالح مورد استفاده در ساخت بتن،سیمان،شن وماسه،پوکه
11. آشنایی با ابزار و وسایل باراندازی و حمل
12. شناسایی کیفیت مصالح مورد استفاده در ساختن بتن
13. آشنایی با انبار کردن مصالح
14. انبار کردن سیمان پاکتی
15. انبار کردن شن و ماسه
16. انبار کردن سیمان فله ای
17. شناسایی اصول رعایت نکات ایمنی و حفاظتی ضمن کار
18. شناسایی اصول باراندازی و حمل انبار کردن مصالح بتن
19. آشنایی با عوامل موثر فیزیکی محیط کار
20. آشنایی با عوامل موثر شیمیایی محیط کار
21. آشنایی با عوامل موثر بیولوژیکی محیط کار
22. آشنایی با ارگونومی
23. شناسایی اصول تشخیص عوامل موثر محیط کار
24. توانایی باراندازی، حمل و انبار کردن مصالح بتن
25. توانایی خواندن نقشه های اجرایی بتن و جزئیات آن
26. توانایی ساختن بتن با وسایل دستی
27. توانایی ساختن بتن با وسایل ماشینی
28. توانایی کنترل آرماتورها، قالب و صفحات اتصال براساس نقشه های اجرایی
29. توانایی بتن ریزی
30. توانایی متراکم کردن بتن
31. توانایی تسطیح بتن
32. توانایی بتن ریز سازه های بتن و ساختمانهای مسکونی
33. توانایی بتن ریزی سازه های بتنی با اختلاف سطح و سقف های شیب دار
34. توانایی بتن ریزی سقف های بتن آرمه در سازه های مختلف
35. توانایی بتن ریزی رادیه ژنرال
36. توانایی حمل و مونتاژ قطعات پیش ساخته بتنی
37. توانایی تهیه نمونه های آزمایشی بتن
38. توانایی پیشگیری از حوادث و رعایت نکات ایمنی و حفاظتی و بهداشت کار
39. توانایی اجرای مقررات و آئیین نامه های شغلی



ابزار و وسایل
1. نمونه های مختلف نقشه های اجرایی و جزئیات
2. ماشین حساب
3. نوشت افزار
4. خط کش
5. انواع مصالح
6. فرقون
7. بیل
8. ذنیه
9. وسایل حمل ماشینی
10. لباس کار
11. کفش ایمنی
12. دستکش
13. کلاه ایمنی



شرایط ارتقاء شغل
بتن ساز و بتن ریز برای ارتقاء شغلی خود باید در انجام کارها دقیق و سرعت لازم را برای گرفتن کار بیشتر و تجربه بالاتر بکار بندد.


ویژگی های شخصیتی
این شغل که در شاخه رشته عمران محسوب می گردد بسیار مهم و به روز است. ساختمان سازی با نام بتن یکی شده است و نمی شود استحکام را در ساختمان مشاهده نمود بدون بتن.
گر چه بتن سازی و بتن ریزی با دستگاه صورت می گیرد و کار برای نیروی انسانی بسیار آسان تر از گذشته شده است اما این شغل برای افرادی که علاقمند به آن هستند خود مشاغل سخت حساب می شود. محیط کاری که این عملیات در آن صورت می گیرد پر از خاک و خل است و شاغل در کنار بتن ریزی به جهت اجرای سازه های بتنی از قبیل سازه های مبتنی (آمفی تئاتر، بار انداز، سیلو و دودکش) باید دستان قوی که توسط ماشین های کوچک ساخته می شود نیازمند انبار کردن سیمان و انبار کردن شن و ماسه نیز دارد که این باعث کار بیشتر می شود در واقع این کار یک کار مردانه و جمعی است و فرد باید روحیه کار جمعی را به خوبی داشته باشد.

ساخت بتن های چند منظوره با استفاده از مكمل A.C.P

ساخت بتن های چند منظوره با استفاده از مكمل A.C.P

 

 از جمله عوامل اصلی نفوذپذیری بتن می توان به تبخیر بخشی از آب اختلاط که جهت حصول کارائی یا روانی بیشتر به بتن اضافه می شود اشاره نمود که به دلیل عدم شرکت در واکنش هیدراسیون از بتن تبخیر شده و باعث ایجاد لوله های موئین زیادی در بتن خواهد شد. یکی دیگر از عوامل اثر گذار در نفوذپذیری بتن کسری فیلر سنگدانه ها و عدم استفاده از ریز دانه یا پر کننده مناسب است که ما را ناگزیر به مصرف سیمان بیشتر می کند . سیمان اضافه با جذب آب از مخلوط بتن باعث افزایش میزان مصرف آب شده و نهایتا نفوذپذیری را افزایش می دهد از سوی دیگر سیمان میزان قلیای بتن را بالا برده و احتمال سرطانی شدن بتن (A-A-R) را افزایش می دهد .
ماده افزودنی مکمل بتن A.C.P که بخش اساسی مواد سازنده اش را 1- میکروسیلیس 2- فوق روان کننده 3- واترپروف 4- کاتالیزور تشکیل می دهد با هدف ارتقاء خواص در زمان ساخت به بتن اضافه می کنیم. این ماده که در حدود 6 الی 9 درصد وزن سیمان به بتن افزوده می شود علاوه بر امکان کاهش حدود 15% الی 20% از نسبت آب به سیمان باعث افزایش کارائی یا اسلامپ بتن شده لذا به تراکم بهتر بتن و جلوگیری از حبس شدن هوا در بتن کمک نموده و هنگام باز نمودن قالبها هرگز مقاطع کرمو یا متخلخل روی بتن به چشم نخواهد خورد از سوی دیگر زمان حفظ اسلامپ بتن را جهت حمل بتن در مسافت های طولانی تر یا بتن ریزی با مدت زمان بیشتر افزایش داده و میزان نفوذپذیری و درصد جذب آب بتن را در حدود 90% کاهش داده و مقاومت فشاری را در حدود 50% افزایش می دهد.

افزودنی مکمل بتن پس از افزوده شدن به بتن رفتار های شیمیائی خود را به ترتیب ذیل شروع می کند:
ابتدا مواد فوق روان کننده سازنده A.C.P با انتقال بار الکتریکی منفی به دوغاب سیمان و افزایش اسلامپ به دلیل تبدیل نمودن بتن به مخلوط تک قطبی باعث افزایش اسلامپ می گردند.
به طور همزمان مواد واترپروف موجود در مکمل بتن با توجه به بافت کاملا میکرونیزه و غیر قابل انحلال خود طی انجام عمل اختلاط در بچینگ و تراک میکسر با جایگیری در ریز ترین فضاهای خالی و خلل فرج ریز میکروسکپی باعث رفع اثرات نامطلوب کم بودن فیلر در بتن می گردند بدین ترتیب نفوذپذیری بتن به مقدار قابل توجهی کاهش پیدا می کند.
پس از آغاز واکنش هیدراسیون میکروسیلیس(SiO2) موجود در مکمل بتن با Ca(OH)2 قابل انحلال وارد واکنش شده و سیلیکات کلسیم هیدراته(C-S-H) تولید می کند.
سیلیکات کلسیم ایجاد شده علاوه بر غیر قابل انحلال بودن باعث بالا بردن مقاومت فشاری بتن شده و یکی از عوامل اصلی قلیائی بتن را کاهش می دهد و نقش موثری در کاهش احتمال بروز واکنش قلیائی سنگدانه ها خواهد داشت .
مواد کاتالیزور سازنده افزودنی مکمل بتن نقش اساسی در بهبود انجام واکنش میکروسیلیس با Ca(OH)2 موجود در بتن دارند زیرا تمامی واکنش های شیمیائی برای پیشرفت نیاز به نوعی کاتالیزور دارند.
کاتالیزور به کار رفته در مکمل بتن باعث تکمیل و بهبود واکنش فوق الذکر می گردد و از به هدر رفتن میکروسیلیس ( که در طرح های اختلاط معمول در حدود 15% است) جلوگیری به عمل می آورد به همین دلیل است که مصرف مکمل بتن در حدود 2% کمتر از ژل میکروسیلیس یا میکروسیلیس و فوق روان کننده به صورت مجزا خواهد بود

عملكرد و دوام بتن مسلح حاوي پوزولان هاي مختلف

عملكرد و دوام بتن مسلح حاوي پوزولان هاي مختلف در شرايط محيطي درياچه اروميه

افشين حسن,كربلايي فرجي حسين


کاربرد مواد افزودني معدني پوزولاني مي تواند تـاثير عمده اي بر خواص بتن بخصوص بر دوام بتن در محيط هاي خـورنده داشته باشد. در اين تحقيق، دوام نمونه هاي بتني مسلح ساخته شده با سيمان نوع 2، پـوزولان توف سبـلان، پـوزولان پوميس عنصرود و دوده سيليس در شرايط شبيه سازي شده درياچه اروميه در مدت 6 ماه بررسي شده است. نمونه هاي آزمايشي با دو نسبت آب به سيمان متفاوت و سه نوع پوشش بتني آرماتور تهيه و در معرض شرايط متفاوت محيطي (آزاد، مغروق، تر و خشک) قرار داده شده اند. آزمايش هاي مقاومت فشاري، ميزان نفوذ يون کلر، عمق کربناتاسيون، مقاومت الکتريکي، پتانسيل خوردگـي و شدت خوردگـي آرماتور در سنين مختلف بـر روي نمونه ها انجام گرفته است. نتايج آزمايش هاي صورت گرفته نشان مي دهد كه شرايط تر و خشك در بتن ها بيشترين تاثير را داشته است. در شرايط مغروق در آب درياچه، اگر چه پتانسيل خوردگي آرماتورها بسيار بالاست و مقاومت الكتريكي نمونه هاي قرار گرفته در اين محيط نسبت به محيط شاهد كاهش چشمگيري داشته است، اما به علت عدم وجود اكسيژن شدت خوردگي آرماتورها ناچيز است. اغلب بتن هاي حاوي پوزولان، دوام بهتري نسبت به بتن شاهد حاوي سيمان تيپ 2 نشان داده و بهترين عملكرد مربوط به بتن حاوي دوده سيليس بوده است. كاربرد سيمان در حد 450kg/m3 و نسبت آب به سيمان كمتر از 0.4 تاثير عمده اي در جلوگيري از نفوذ مواد مضر به داخل بتن و در نتيجه افزايش دوام آن داشته است.


كليد واژه: دوام بتن، مقاومت الكتريكي، نفوذ يون كلر، مقاومت فشاري، كربناتاسيون، پتانسيل خوردگي، شدت خوردگي
دانشکده فني دانشگاه تبريز بهار 1387; 35(3 (پياپي 51) ويژه مهندسي عمران):1-12.

کاربرد نانو در صنعت سیمان

کاربرد نانو در صنعت سیمان

امروز نانوتکنولوژی تمامی مرزهای دانش را در نوردیده است و صنعت سیمان ها از این امر مستثنی نمی باشد. در زیر مقاله ای جهت مطالعه تقدم می گردد. نانوسم (NANOCEM) یک تحقیق جدید شبکه اروپاست که بر روی مراحل توسعه اصول فنی نانو (مقیاس یک بیلیونی) در مواد سیمانی متمرکز شده است.

بستهای سیمان پورتلند ، اجزا اولیه فعال بتن هستند که در بیشتر ساختمانهای مدرن استفاده می شوند . دیگر تشکیل دهنده های بتن ، آب و مصالح دانه ای ریز و درشت (مانند شن و سنگ) هستند. 
بستها از جوش سیمان پورتلند با زمینه کمی از سولفات کلسیم ساخته شده اند و به طور متداول شامل پودرهای ریز معدنی مثل سنگ آهک ، پوزولان (معمولا خاکسترهای آتش فشانی) ، خاکستر بادی (معمولا از زغال سوخته گیاهان پر قدرت) و سرباره دانه ای کوره بلند ، هستند.
چنین گردهمایی به عنوان مواد سیمانی تکمیلی تلقی می شوند زیرا آنها برای جایگزین شدن به جای بیشتر چسب سیمانهای گران استفاده می شوند. مواد افزودنی شیمیایی مانند افزودنی ها کاهنده آب ، فوق روان کننده ها (خمیر کننده ها) ، کندگیر کننده ها ، تند گیر کننده های بتن و عوامل هوازا می توانند به بتن در مقدار کم اضافه شوند تا خصلتهای بتن را برای موارد استفاده خاص تغییر دهند.

 توضیح درباره نانو : 

گر چه سیمان پرتلند در مقدار وسیع در مواد دست ساز بشر بر روی زمین استفاده می شود اما فهم مکانیزم اصلی ، حاوی خصوصیاتش به طور طبیعی باقی مانده است . مراحلی که در طول 1لحظات نخستین واکنش با آب اتفاق می افتد ، می تواند ساختارهای بزرگ و ریز را تحت تاثیر قرار دهد و اجرای طولانی مدت یک ساختار را در پی داشته باشد. 
بیشتر واکنشهای شیمیایی که عملکرد مواد سیمانی را کنترل می کند در مقیاس نانو سنج (یک بیلیون) اتفاق می افتد ولی اکثر تحقیقات ، عملیات مهندسی گرفته اند و بر روی مرحله درشت (قابل دید) متمرکز شده اند. فقدان فهم جزییات مولکولی از رشد چشم گیر تقریبا جلوگیری کرده و موج ناتوانی در پیش بینی وضع آینده شده است. نیاز برای آزمایش مکرر خصوصیات در تناسب درشت دانه ای مانع نوآوری و استخراج در SCM هایی که به طور گسترده ای در دسترس قرار دارند ، شده است که به طور کلی در جا دادن انرژی اندک (جدول سمت راست را ببینید) و غیر سمی می باشند. 
در حال حاضر ، در هر ساختمانی که در آن از مواد سیمانی جدید با عملکرد بالا استفاده می شود ، نیاز به تست زمان (طولانی کردن) دارد. با کسب دانش بنیادین ، این مواد می توانستند به جای آزمایش و خطا با طراحی و پایه گذاری بر روی مدلهای معتبر ، ساخته شوند. 
هدایت در مسیر صحیح : 
در طول این فعالیت بر روی این مطلب یعنی نانوسم ، 21 انجمن علمی به همراه 12 شریک صنعتی که 5 شرکت بزرگ تولید کننده سیمان را در بردارد بنا نهاده شد و در 11 کشور اروپایی گسترش یافت و در طول یک چهارم قرن گذشته انقلابی در تکــــنیکهای تجربی برای رسیدگی به مواردی مثل تشـــدید طیف بینی مغناطیســــی هستـــــه ای (NMR) و نیروهــای میکروسکوپی بوجود آورده اند و به شرکای نانوسم امکان دسترسی به ابزارهای پیشرفته را داده است. 
شرکتهای صنعتی خط شروع مالی برای شبکه ارتباطی فراهم کرده اند و راهنمایی با احترام به پیش بینی علایق بازار فراهم نموده اند. اعضای انجمن علمی مجبور هستند که حداقل یکی از پروژه های تحقیقاتی مستقل مالی را با شبکه ارتباطی تسهیم کنند و باید تحقیقاتشان را به روش تعاونی و مکمل توسعه دهند . 
کارگاههای اصلی برگزار می شوند تا قسمتهای مهم خالی علمی را پیدا کنند و با ارتباط دادن پروژه های تحقیقاتی ، سعی در پر کردنشان نمایند. 
این کمیته هدایت کننده شامل 5 نماینده از شرکای صنعتی و 5 نفر از انجمن علمی است . جلسات تجاری دو بار در سال برگزار می شود . برنامه تحقیقاتی شبکه ارتباطی ، چهار پروژه اصلی و پروژه شریکی در دست اجرا داد که شامل موارد زیر است :
مجموعه هیدرات که خود متشکل از کربن ، سولفور هیدروژن (C-S-H) می باشد. در حال حاضر مشخص کردن کمی ترکیب وجهه هیدراتی ممکن نیست در حال حاضر مشخص کردن کمی ترکیبی هیدراتی که از هیدرات یک سیستم سیمانی منتج شده است ، ممکن نیست ، مخصوصا زمانی که (SCM) هایی مثل خاکستر بادی یا سرباره شامل آنها می شود. هدف این پروژه ها تعیین مواد تشکیل دهنده و استحکام ترکیب وجهی هیدرات است که انتظار مـی رود ، در دمای بالاتر از 50 درجه سانتی گراد اتفاق بیفتد. این تحقیق شامل پروژه های دکترای تخصصی است که به طور پیوسته توسط دانشگاه های ابردین Aberdeen بریتانیا ، امپا Empa در سوئیس و Espcl در فرانسه هدایت می شود. 
ساختار منفذ توسط NMR : این پروژه امیدوار است تا تنظیم جامعی بر روی هنرهای غیر مخرب ، ابزارهای تکنیکی غیر تهاجمی داشته باشد و آنها را قادر می سازد ، ساختار منفذ هیدرات سیمانها را در حدی که در آن منافذ با آب پر می شوند و قابلیت جابجایی آب در مواد اشباع کننده را تحلیل کنند. نتیجه کار اجازه خواهد داد که دوام و عملکرد بتن به طور بهتری پیش بینی شود . دو گروه از گروههای هدایت کننده در منطقه چرخش پروتنی را دانشگاههای سوری Surrey در بریتانیا و پلی تکنیک فرانسه را شامل می شود. 
فعل و انفعالات ترکیبات آلب آلومینیم با اکسید فلز : این امر یکی از مشکلترین مباحث مربوط به اثر سیمان و فوق روان کننده (خمیر کننده) در بتن است. برای مثال شتاب فوق خمیریازی بر روی فرمهای غیر فعال ( که صورت ترکیب آلی آلومینیم با اکسید فلز نامیده می شود) در طول مراحل اولیه ترکیب سازی بتن می باشد. 
این پدیده شناخته شده ، منتهی به مصرف مقدار زیاد فوق خمیرسانی در بسیاری از بتن ها و بوجود آمدن مشکلات کاربردی جدی ، زمانی که مواد خام یا شرایط ترکیب تغییر کرده اند ، می شود. این تحقیق توسط سیکا در سوئیس و Espc هدایت می شود. 
واکنش پذیری سیستم سیمانی : در پروژه دکتــــری تــوسط EPFL در سوئیس و DTU در دانمارک و دانشگاه آرهوس Aarhus دانمارک و دانشگاه لیدز Leeds در بریتانیا در دست تحقیق است که بر روی توسعه یک روش برای تشخـــــــیص درجه عکس العمل قسمت جوش سیمانی و به طور مستقل SCM ها در سیمانهای چسبیده است. 

شریک شدن :

پروژه های شرکتی در محدوده شبکه ارتباطی ماننده تحقیقات در دست اجرای دانشگاههای Bourgogne فرانسه درباره اثر آهن بر روی پیوستگی و ساختار C-S-H در مقیاس نانو از بنیاد تا کاربرد است . برای مثال در موسسه تکنولوژی دنیش Danish ، مطالعه ای بر روی مکانیزم زیباشناختی ظاهری بتن بر روی ساختار سرتاسری صورت پذیرفته است. 

تحقیق و تعلیم : 

علاوه بر هسته تحقیقات نانوسم که بوسیله شرکای صنعتی در حدود 500 هزار یورو در هر سال از لحاظ مالی تامین می شود ، مرکز مالی EU ، 2/3 میلیون یورو برای چهار سال تحقیق و تعلیم پروژه (RTN) شبکه ارتباطی تحت برنامه ماری کوری ، برنده شده است. 
این پروژه فهم اساسی مواد سیمانی برای بهبود عملکرد زیباشناختی فیزیکی و شیمیایی نام نهاده شده و بین 10 پروژه دکتری و 5 پروژه فوق دکتری تقسیم شده است که هر کدام بین دو یا چند شریک قسمت می شود. محققان زمانی برای هر منطقه شراکتی در طول پروژه صرف می کنند . 
موضوعات به چهار گروه تقسیم می شود : کاستن قالب سیمان : این موضوع بع طور اولیه فروسایی سیمان با تاکیر بر حملات سولفات رامی پذیرد . نیروی سایش نیز در این موضوع مد نظر گرفته می شود . این کار ساخت مدل کلی عملکرد سیمان را تامین می کند. 
بررسی فیزیکی و مکانیکی عملکرد :

این مقیاسهای طولانی ، بررسیهای ارتباطی نانو ، ماکرو و ساختــــاری بزرگ برای توسعه ابزارهای در جهت ارزش گذاری عملکرد مهندسی را احاطه می کند. این تحقیق به توسعه اصول تکنیکی و مدلها برای استفاده توسط مهندسین را متحمل می شود. 
مواد سیمانی جدید : در این گروه از پروژه ها ، مقدار عمده مواد علمی و مهندسی بکار گرفته می شوند تا عملکرد مواد سیمانی بر سطح و حجم را بهبود بخشند. این کاریک رشته نوآوریهای لازم برای بهبود عملکردی و زیباشناختی در طول افزودن محلی را می پذیرد. 
پروژه های متقاطع : این پروژه ها ورودیهای مهم برای موضوعی که در بالا اشاره شده است را تامین می کند . آنها SCMهایی را که به طور افزایشی استفاده می شوند ، در ترکیب با جوش سیمان پورتلند ، در علایق قابل تحمل پوشش داده اند.
دستاوردهای جاه طلبانه : 
شبکه ارتباطی نانو ، خود یک منبع ساختمانی جدید ذهنی جاه طلبانه تنظیم کرده که در دستاورد موثری بر تحقیقات اروپایی بر روی مواد سیمانی می باشد. 
به طور کلی انجمنهای علمی کوچک و اغلب مجزا ، طرحهایی برای انجمنهای سرمایه گــذاری بین المللی می سازند و در رقابت با دیگر گروههای مواد علمی و دیسیپلین های مهندسین عمران ارزش گذاری می شوند. اغلب مسائلی ناشناخته قابل توجهی درباره این کار در دیگر کــشورها اتفاق می افتد و چنین کارهایی هیچ گاه منتشر نمی شوند. این امر منتهی به دو برابر شدن تلاشهای تحقیقاتی و مطالعه زیاد پارامتری شده است. جایی که نتایج فقط برای ترکیب خاصی از مطالعه مواد خام در دسترس هستند. 
نانوسم تلاش بیشتری را برای روشن کردن پروژه ها و جمع آوری تجربیات همه شرکا انجـــــام میدهد.

منبع a l l e n g i n e e r i n g . i r


پودر زودگير بتن

پودر زودگير بتن

SHOTCRETE  ADMIXTURE

 

اين ماده به عنوان يگ زودگير ويژه بصورت پودر آماده تهيه شده كه به منظور بتن پا شي –شات كريت - مورد ا ستفاده قرار ميگيرد . اجراي آن به راحتي توسط دستگاه مواد پاش با سيستم خشك روي سطوح دلخواه انجام مي شود . پودر پس از اختلاط با مخلوط خشك توسط پمپ با فشار به سطح مورد نظر پاشيده و از لوله دوم آب مورد نياز همزمان به سطح مزبور پاشيده مي شود .

كه مخلوط حاصل به محض اصابت با ديواره سطح بخاطر قدرت چسبندگي زياد و گيرايش اوليه بالا به آن مي چسبد . ضمنا از اين ماده به عنوان يك زود گير معمولي در ملات هاي سيماني و بتني نيز ميتوان استفاده نمود .

 خصوصيات ويژه :

-تقويت چسبندگي درحد بالا

-گيرايي اوليه فوق العاده زياد

-ازدياد مقاومت اوليه بتن- حدود 75 كيلوگرم بر سانتيمتر مربع در 8 ساعت اوليه-

-كا هش پرت بتن پاشي وصرفه جويي اقتصادي

 موارد مصرف :

اين ماده افزودني مخصوص ملاتهايي تهيه شده كه بايستي توسط دستگاه مخصوص مواد پاش روي سطوح مختلف پا شيده شود هر چند كه در ملاتهاي سيماني و بتني نيز قابل استفاده مي باشد . ملاتهاي مزبور ميتواند در پروژه هاي زير مورد استفاده قرار گيرد .

-ديواره وسقف تونل

-چاه هاي حفاري واسكله ها

-سدها وكانا لهاي انحرافي آب

-مرمت وتقويت سريع سازه هاي بتني

-مكانهايي كه امكان خطر ريزش زياد است

 ميزان مصرف :

جهت بتن پاشي شات كريت 6 الي 8 درصد وزن سيمان مصرفي - بتن 350- بايستي پودر به مخلوط خشك وماسه اضافه وتوسط همزن برقي مخلوط گردد . هنگاميكه از اين ماده به عنوان زودگير معمولي در ملات هاي سيماني و بتني استفاده ميشود ميزان مصرف 5/1 ا لي 2 درصد وزن سيمان مصرفي خواهد بود .

مشخصات فني :

-حا لت : پودر

-رنگ : كرم

-يون كلر : ندارد

-وزن مخصوص : KG-L 9/0

-ميزان چسبندگي : فوري بلافاصله پس از تماس با سطوح مورد نظر در بتن  پاشي

-گيرايي اوليه : 10 ا لي 15 ثانيه در بتن پا شي

-مدت نگهداري : يكسال در ظروف دربسته وشرايط خشك

لكه گيري بتن هاي كف

لكه گيري بتن هاي كف

اين ماده جهت ترميم محلهاي تخريب شده بتن هاي كف مورد استفاده قرار مي گيرد و اغلب جهت تعميرات بتن هاي مقاوم كف كارخانجات مراكز صنعتي و اصولا براي كليه كف هاي ظتني كاربرد دارد .

 خواص ويژه :

-مقاومت فوق ا لعاده

-بدون نشست

-كارآيي وقابليت اعتماد بالا

-دوام وپايداري زياد

-سهولت عمليات اجرايي وكاربرد سريع -ظرف 24 ساعت جهت ترافيك سبك وظرف 72 ساعت جهت ترافيك سنگين آماده ميشود -

-فاقد يون كلر وبدون آهن

-يكنواختي با سطوح همجوار

 يك پودر آماده مصرف بر پايه مواد سيماني ويژه و ريزدانه هاي مختلف و افزودني هاي مخصوص توليد شده كه پس از مخلوط نمودن با آب مورد استفاده قرار مي گيرد . با توجه به نسبت پايين آب به پودر، اين ماده در نهايت از قدرت بالايي برخوردار خوا هد بود . مقالات عمران

جهت تعميرات شيارهايي با عمق 25 ميليمتر به بالا بايستي به ميزان كافي از ما سه سايز بندي صفرالي 10 ميليمتر كه توسط دستگاه خرد شده وبخوبي شسته و تميز شده باشد استفاده شود. بايستي دقت شود مقدار وزني ماسه نسبت به بيشتر نشود كه در اين صورت بايستي ميزان آب به  18/0 افزايش يابد .

 جدول مقاومت فشاري

اجزاء مواد

درجه حرارت

نسبت آب به پودر

مقاومت فشاري بر حسب كيلوگرم بر سانتيمتر مكعب

 7روزه              28 روزه

پودر +آب

C 25

14/0

        500                 600

پودر +ما سه +آب نسبت 1به 1

C 25

18/0

        600                 700

 دستورالعمل هاي مخلوط نمودن :

ا لف – از يك مخلوط كن با قدرت متوسط ا ستفاده مي شود ولي براي مقادير كم تا 50 كيلوگرم ميتوان از يك بيلچه استيلي استفاده نمود . توجه شود كه هيچگاه با دست مخلوط نشود .

ب-ابتدا حدود 80 درصد از حجم تعيين شده آب را در ميكسر ريخته و همچنين ميتوان از 6 تا 8 تكه سنگهاي سخت – تميزباشند- ويا مكعب هاي بتن 100 ميليمتري در ميكسر استفاده نمود تا كارآيي مخلوط كردن افزايش يابد .

ج- به آرامي مقدار لازم را به ميكسر اضافه و مداوم بهم بزنيد .

د: سپس باقيمانده آب را با ملات اضافه ومخلوط نمودن را تا حد حصول يك ملات يكنواخت و فاقد حباب ادامه دهيد .

ه- توجه داشته باشيد افزودن آب اضافي، قدرت ملات را كا هش مي دهد .

آماده سازي سطوح با پرايمر واجراي:

پس از تميز نمودن سطوح مورد نظر بايستي در دو دست از پرايمر مخصوص به عنوان زير سازي ا ستفـاده شود – نسبت رقيق نمودن پرايمر به آب، 1به 5 مي باشد . فاصله زماني اجراي لايه اول ودوم با توجه به درجه حرارت 1 ا لي 3 ساعت مي باشد كه بايستي لايه اول خشك شود . پس از اجراي لايه دوم ودر حالي كه هنوز مرطوب است از ملات آماده شده  استفاده  شود. بايستي ابتدا اين ماده در تمام لبه ها وسطوح اعمال به حدي كه كاملا تركها وشيارها پر شود ، سپس با ماله فلزي يا چوبي صاف گردد. جهت كيورينگ بايستي سطح تكميل شده نهايي با ورقه پلي اتيلن ضخيم پوشانده كه نسبت به هوا نفوذ ناپذير باشد ، بعد از 48 ساعت با الياف مرطوب يا حوضچه آب، تا 72 ساعت مربوط نگه داشته شود . پيشنهاد مي شود جهت شيارهاي كوچك در مساحتي حدود 2 متر مربع يكباره اجرا شود. در صورت نياز به تعميرات سطوحي كه با ملات پوشش داده مي شوند بايستي به محض اينكه سطوح كمي سفت شود وقبل از 4 ساعت ترميم شوند.

 ميزان پوشش پرايمر مخصوص :

مخلوط يك ليتر پرايمر با 5 ليتر آب، سطحي در حدود 10 متر را پوشش مي دهد . مخلوط يك كيسه 25 كيلو گرمي با مقدار آب لازم در حدود 13 ليترتوليدمي كند.

 نگهداري و توصيه هاي ايمني :

مي توان تا 6 ماه در ظروف دربسته و محل خشك نگهداري نمود . از انبار كردن آن در محل هاي مرطوب  جدا پرهيز شود . پرايمر مخصوص غير سمي هست ولي هنگام كار كردن با ملات از دستكش وجهت تميز نمودن از آب استفاده شود .

مبانی بتن

مبانی بتن

 

بتن اساسا از دو قسمت دانه ­های سنگی (Aggregates) و خمیر سیمان (Concrete) تشکیل شده است. خمیر سیمان که در واقع مخلوطی از سیمان پرتلند و آب می­باشد.
   - در اثر واکنش شیمیایی سیمان و آب روند سخت شدن ادامه یافته و در نتیجه دانه ­ها (ماسه و شن) را بصورت تودﮤ سنگ مانندی به یکدیگر می­چسباند.
   - دانه ­ها به دو گروه ریزدانه که تا ¼ اینچ (6میلیمتر) و درشت دانه که روی الک شماره 16 (1.18 میلیمتر) تقسیم می­شوند.

   - خمیر سیمان عموما حدود 25 تا 40% کل حجم بتن را تشکیل می­دهد که حجم مطلق سیمان بین 7 تا 15% و حجم آب از 14 تا 21% است. مقدار هوای در بتن تا حدود 8% حجم بتن را تشکیل می­دهد این اندازه به درشت ترین دانه بستگی دارد.

   - برای مصالح و شرایط عمل آوردن (Curing) معین، کیفیت بتن سخت شده به مقدار آب در مقابل با مقدار سیمان بستگی دارد.

مزایای کاهش مقدار آب

1.    افزایش مقاومت فشاری و مقاومت خمشی

2.    افزایش قابلیت آب بندی (Water Tightness)

3.    کاهش جذب آب (Absorption)

4.    افزایش مقاومت نسبت به عوامل جوی

5.    پیوستگی بهتر بین لایه های متوالی

6.    چسبندگی بهتر میان میلگرد و بتن

7.    کاهش تغییرات حجمی در اثر تر و خشک شدن

  

انواع سیمان پرتلند

-         نوع 1 : برای استفاده عمومی ومناسب برای همه کارها

-         نوع 2 : زمانی که احتیاطات علیه حمله سولفات ها مهم باشد

-         نوع 3 : با مقاومت زودرس که مقاومت های بالا را در مدت کوتاهی می دهد

-         نوع 4 : با حرارت هیدراسیون کم در جائی که میزان و حرارت تولید شده باید حداقل باشد

-         نوع 5 : در بتن هائی که در معرض شدید سولفاتها قرار دارن (ضد سولفات)

-         سیمان حباب زا (نوع A1، A2، A3) در برابر یخ زدن و آب شدن و همچنین پیوسته شدگی حاصل از اثرات مواد شیمیائی برای از بین بردن یخ جاده ها مقاومت بهبود یافته ای دارند.

سیمان پرتلند سفید تفاوت بنیادی آن در رنگ می باشد

    اختلاط

   ترتیب 5 مادﮤ متشکله بتن در مخلوط کن نقش مهمی را در یکنواختی بتن خواهد داشت.

کنترل ترک

دو عامل اصلی برای ترک در بتن عبارتند از :

1.    تنش بر اثر بارهای وارده (Control joints)

2.    تنش بر اثر آب رفتگی در حین خشک شدن یا تغییرات دما (Restraint)

شیوه جلوگیری

1.    درزهای کنترل مؤثرترین شیوه جلوگیری از ترک های غیر قابل رؤیت به شمار می آیند (Isolation Joints)

2.    درزهای جداکننده دال را از قسمتهای دیگر سازه جدا می کنند و اجازه حرکت افقی و عمودی را در دال می دهد (Footings)

3.    درزهای اجرائی جائی که کار بتن ریزی روزانه پایان می یابد، ایجاد می شوند; و مناطقی را که در دفعات مختلف بتن ریزی می شوند از یکدیگر جدا می سازند.

      

مواد افزودنی بتن (Admixtures)

1.    مواد افزودنی حباب زا (Air-entraining  )

2.    مواد افزودنی کاهنده آب (Water Reducing)

3.    مواد افزودنی کندگیرکننده (Retarding)

4.    مواد افزودنی تسریع کننده (Accelerating)

5.    پوزولانها

6.    مواد کارائی ساز شامل روان سازهای اعلا (Super Plasticizers)

7.    مواد متفرقه مانند مواد پیوند ساز، ضد رطوبت، کاهنده نفوظ پذیری، دوغاب ساز و گاز ساز

بتن ریزی و پرداخت

-         تدارکات پیش از بتن ریزی

شامل متراکم کردن، درست شکل دادن، مرطوب نمودن سطح زمین ، بستن قالبها،قرار دادن آرماتورها و سایر اقلام کار گذاشته شده بطور محکم در محلهای خود.

قالبها باید بطور دقیق قرار داده شوند وخود یا آستر آنها با مصالحی ساخته شده باشد که سرانجام نمای مطلوبی را به سطح  بتن سخت شده ارائه کنند.قالبهای چوبی باید قبل از بتن ریزی مرطوب شوند در غیر اینصورت آب بتن را جذب کرده و متورم می شوددر استفاده از قالبهای چوبی باید از بکار بردن میخهای خیلی بزرگ یا به تعداد خیلی زیاد اجتناب ورزید تا برداشتن قالبها آسان شود و آسیب پذیری کاهش یابد.و برای سهولت در برداشتن قالبها باید آنها را با یک ماده رها ساز مانند روغن یا لاک آغشته کرد.

هنگامی که بتن ریخته می شود،میلگردهای فولادی باید تمیز بوده وعاری از زنگ  یا لایه اکسیده باشد. میلگردهای فولادی و سایر اقلام کار گذاشته که آغشته به ملات باشند، نیازی به .پاک کردن ندارند به شرطی که عملیات بتن ریزی در عرض چند ساعت پایان پذیرد.

ریختن بتن

بتن باید بطور پیوسته تا حد امکان در نزدیکی محل نهای خود ریخته شود.در اجرا دالها ، بتن ریزی باید در امتداد پیرامون انتهای دال آغاز شو د و هر پیمانه روی بتن ریخته شده قبلی تخلیه شود. عموما بتن در لایه­های افقی با ضخامت یکنواخت  ریخته شود وهر لایه باید قبل از ریختن لایه بعدی بطور کامل تراکم یابد. میزان بتن ریزی باید به اندازه کافی سریع بوده تا هنگام ریختن لایه جدید روی لایه قبلی ،آن لایه در حالت خمیری باشد . این امر باعث جلوگیری از خطوط جریان، درزها و سطوح سفحات ضعیف می شود که هنگام ریختن بتن تازه روی بتن سخت شده روی می­دهد.

   پیمانه های نخستین در هر مرحله بتن ریزی در دیواره ها و تیرهای اصلی باید در دو انتهای عضو ریخته شوند و سپس بتن ریزی های بعدی به سوی قسمت مرکزی پیش روند. در تمام حالات باید از جمع شدن آب در انتهاها، در گوشه ها جلوگیری شود.

-ارتفاع سقوط آزاد بتن نیازی به محدود شدن ندارد مگر اینکه جدائی درشت دانه ها رخ دهد که در آن صورت بتن از طریق بازشوهای پهلوئی موسوم به پنجره، که در اطراف قالبهای بلند و باریک وجود دارند، ریخته می شوند. در خارج بازشوها باید از یک مخزن قیفی شکل جمع شونده استفاده شود تا بتن امکان یابد آرام تر از کنا بازشو جریان یافته و تمایل به جدائی دانه ها کاهش یابد.

قبل از اینکه سطح بتن سخت شود بتن ریزی باید دوباره از سر گرفته شود تا بدینوسیله از ایجاد اتصال سرد جلوگیری به عمل آید.

متراکم کردن بتن

متراکم کردن عبارتست از نزذدیک ساختن ذرات جامد در بتن تازه به گونه ای که ریختن آن در قالبها و دور اقلام کار گذاشته شده و آرماتورها انجام گیرد و نیز محفظه های سنگی و هوای محبوس که بصورت حفره های هوائی اتفاقی یا تصادفی در بتن موجود است از بین برود.

تراکم بوسیله دست یا توسط روشهای مکانیکی صورت می گیرد. روش انتخاب شده بستگی به روانی مخلوط و شرایط بتن ریزی مانند، پیچیدگی قالب بندی و مقدار آرماتورها دارد. مخلوط های خمیری و روان را می توان بطور دستی با کوبیدن بتن با یک میله فولادی یا یک وسیله فولادی دیگر متراکم ساخت.

تراکم مکانیکی مناسب، بتن ریزی مخلوطهای سفت با نسبتهای آب به سیمان پایین و بتن های خوب حاوی درشت دانه های زیاد را امکان پذیر می سازد.

برداشتن قالبها( باز کردن آنها)

قالبها راتا مادامی که بتن به اندازه کافی مقاومت پیدا نکرده تا بتواند به طور رضایت بخشی تنشهای ناشی از بار مرده و نیز هر گونه بار اجرایی((construction load وارده را تحمل کند،نباید برداشته شود.بتن باید به اندازه کافی سخت شده باشد به نحوی که وقتی دقت معقولی در باز کردن قالبها انجام شود هیجگونه آسیبی به به سطوح نرسد.به طور کلی برداشتن قالبهای مقاطع نسبتا ضخیم را می توان 12 تا 24 ساعت پس از بتن ریزی برداشت.در اغلب شرایط ، برای زمان برداشتن قالبها بهتر است که متکی به مقاومتی از بتن بوده که بوسیله آزمایش تعیین می شود .

میله نوک تیز یا سایر ابزار فلزی را نباید جهت شل کردن قالبها میان بتن و قالب به زور گذاشته شود.اگر لازم باشد جدا کردن قالب از بتن با استفاده از گوه (wedge (انجام گیرد، فقط باید با گوه های چوبی بکار روند.

برداشتن قالبها باید از قسمتهای ساده آغاز شده وسپس به سوی قسمتهای پیش آمده پیشروی شود.این امر فشار وارد به گوشه های پیش آمده را کاهش می دهد.

لکه گیری، پاک کردن،وپرداختن سطوح قالب گیری شده

پس از برداشتن قالبها تمام برجستگیها،خطوط نشت،و پیش آمدگیهای کوچک باید به وسیله قلم زنی (chipping ( از بین برده شود.سطح بتن سپس باید سابیده یا مالیده شود. هر گونه باید پر شود.سطوح کرمو باید مرمت شده و تمام لکه ها باید پاک شوند . با دقت در عملیات اجرای قالب بندی و بتن ریزی ، تمامی این عملیات به حداقل می رسد.

بتن کرمو و دیگر بتن های معیوب باید کنده شوند تا مصالح خوب و سالم پدید آید.

اگر بتن معیوبی مجاور محل لکه گیری شده باقی بماتد ،ممکن است رطوبت به درون خلل و فرج راه یابد و به مرور زمان عوامل جوی موجب کنده شدن بتن مرمت شده شود. لبه ها باید به طور  مستقیم و عمود بر سطح ، بریده یا قلم زنی شوند ،یسا مقدار کمی تو بریدگی داده شوند تا زبانکی را در کنار جای لکه گیری شده فراهم سازد.

پیش از اعمال بتن لکه گیری ، بتن اطراف باید برای چندین ساعت خیس نگه داشته شود.تمام سطوحی که بتن جدید به آنها پیوند داده می شوند،باید بوسیله برس دوغاب زده شوند.

تکه های کم عمق را با ملات سفت مشابه آنچه کهدر بتن بکار می رود ،می توان پر کرد.لکه گیری باید لایه به لایه انجام شود. به گونه ای که ضخامت هر لایه بیشتر از13 میلی متر نبوده و نیز هر لایه به صورت مضر س پرداخت شود تا پیوند آن به لایه بعدی بهتر صورت گیرد. لایه نهایی را با استفاده از تخته ماله به نحوی پرداخت کرد که با بتن اطرهف خود همگون باشد

عمل آوردن تکه های لکه گیری شده

پس از لکه گیری، عمل آوردن باید تا جایی که ممکن است زودتر آغاز شودتا از خشک شدن زود هنگام جلوگیری شود . کرباس تر،ماسه خیس، نایلون را می           توان به کا برد.

عمل آوردن و حفاظت

عمل آوردن بتن تاثیر قوی روی خواص بتن سخت شده مانند دوام، مقاومت، آب بندی، مقاومت سایشی، ثبات حجمیو مقاومت در برابر یخ زدن وآب شدن دارد.

تمامی سازه های بتنی تازه ریخته شده، باید از خشک شدن سریع، از تغییرات شدید دما، و از آسیبهای ناشی از کارهای ساختمانی و عبور و مرور بعدی محفوظ بمانند.

عمل آوردن تا حد امکان باید بلافاصله پس از پایان کار بتنی آغاز شود.

عمل آوردن به دلایل زیر ضروری است :

نگهداری بتن تحت دمای ثابت و جلو گیری از افت رطوبت برای مدت زمانی که برای هیدراسیون مطلوب سیمان ونیز برای کسب مقاومت بتن لازم است. 

فرسودگی بتن

 فرسودگی بتن

 

علل مختلفی كه باعث فرسودگی و تخریب سازه های بتنی می شوند - علائم هشدار دهنده كه كار مرمت را الزامی می دارند.
1- علل فرسودگی و تخریب سازه های بتنی (CAUSES OF DETERIORATIONS)
علل مختلفی كه باعث فرسودگی و تخریب سازه های بتنی می شود همراه با علائم هشدار دهنده دیگری كه كار تعمیرات را الزامی می دارند، در نخستین بخش از مقاله مورد بررسی و تحلیل قرار می گیرند:

1-1- نفوذ نمكها  (INGRESS OF SALTS)

نمكهای ته نشین شده كه حاصل تبخیر و یا جریان آبهای دارای املاح می باشند و همچنین نمكهایی كه توسط باد در خلل و فرج و تركها جمع می شوند، هنگام كریستالیزه شدن می توانند فشار مخربی به سازه ها وارد كنند كه این عمل علاوه بر تسریع و تشدید زنگ زدگی و خوردگی آرماتورها به واسطه وجود نمكهاست. تر وخشك شدن متناوب نیز می تواند تمركز نمكها را شدت بخشد زیرا آب دارای املاح، پس از تبخیر، املاح خود را به جا می گذارد.

1-2- اشتباهات طراحی  (SPECIFICATION ERRORS)

به كارگیری استانداردهای نامناسب و مشخصات فنی غلط در رابطه با انتخاب مواد، روشهایاجرایی و عملكرد خود سازه، می تواند به خرابی بتن منجر شود. به عنوان مثال استفاده از استانداردهای اروپایی و آمریكایی جهت اجرای پروژه هایی در مناطق خلیج فارس، جایی كه آب و هوا و مواد و مصالح ساختمانی و مهارت افراد متفاوت با همه این عوامل در شمال اروپا و آمریكاست، باعث می شود تا دوام و پایایی سازه های بتنی در مناطق یاد شده كاهش یافته و در بهره برداری از سازه نیز با مسائل بسیار جدی مواجه گردیم.

1-3- اشتباهات اجرایی  (CON STRUCTION ERRORS)

كم كاریها، اشتباهات و نقصهایی كه به هنگام اجرای پروژه ها رخ می دهد، ممكن است باعث گردد تا آسیبهایی چون پدیدهء لانه زنبوری، حفره های آب انداختگی، جداشدگی، تركهای جمع شدگی، فضاهای خالی اضافی یا بتن آلوده شده، به وجود آید كه همگی آنها به مشكلات جدی می انجامند.

این گونه نقصها و اشكالات را می توان زاییدهء كارآئی، درجهء فشردگی، سیستم عمل آوری، آب مخلوط آلوده، سنگدانه های آلوده و استفاده غلط از افزودنیها به صورت فردی و یا گروهیدانست.

1-4- حملات كلریدی   (CHLORIDE ATTACK)

وجود كلرید آزاد در بتن می تواند به لایهء حفاظتی غیر فعالی كه در اطراف آرماتورها قرار دارد، آسیب وارد نموده و آن را از بین ببرد.

خوردگی كلریدی آرماتورهایی كه درون بتن قرار دارند، یك عمل الكتروشیمیایی است كه بنا به خاصیتش، جهت انجام این فرآیند، غلظت مورد نیاز یون كلرید، نواحی آندی و كاتدی، وجود الكترولیت و رسیدن اكسیژن به مناطق كاتدی در سل  (CELL)خوردگی را فراهم می كند.

گفته می شود كه خوردگی كلریدی وقتی حاصل می شود كه مقدار كلرید موجود در بتن بیش از 6/0 كیلوگرم در هر متر مكعب بتن باشد. ولی این مقدار به كیفیت بتن نیز بستگی دارد.

خوردگی آبله رویی حاصل از كلرید می تواند موضعی و عمیق باشد كه این عمل در صورت وجود یك سطح بسیار كوچك آندی و یك سطح بسیار وسیع كاتدی به وقوع می پیوندد كه خوردگی آن نیز با شدت بسیار صورت می گیرد. از جمله مشخصات (FEATURES ) خوردگی كلریدی، می توان موارد زیر را نام برد:

(الف) هنگامی كه كلرید در مراحل میانی تركیبات (عمل و عكس العمل) شیمیایی مورد استفاده قرار گرفته ولی در انتها كلرید مصرف نشده باشد.

(ب) هنگامی كه تشكیل همزمان اسید هیدروكلریك، درجه PH مناطق خورده شده را پایین بیاورد. وجود كلریدها هم می تواند به علت استفاده از افزودنیهای كلرید باشد و هم می تواند ناشی از نفوذیابی كلرید از هوای اطراف باشد.

فرض بر این است كه مقدار نفوذ یونهای كلریدی تابعیت از قانون نفوذ FICK دارد. ولی علاوه بر انتشار (DIFFUSION) به نفوذ(PENETRATION)  كلرید احتمال دارد به خاطر مكش موئینه (CAPILLARY SUCTION) نیز انجام پذیرد.

1-5- حملات سولفاتی  (SULPHATE ATTACK)

محلول نمكهای سولفاتی از قبیل سولفاتهای سدیم و منیزیم به دو طریق می توانند بتن را مورد حمله و تخریب قرار دهند. در طریق اول یون سولفات ممكن است آلومینات سیمان را مورد حمله قرار داده و ضمن تركیب، نمكهای دوتایی از قبیل:THAUMASITE  و  ETTRINGITEتولید نماید كه در آب محلول می باشند. وجود این گونه نمكها در حضور هیدروكسید كلسیم، طبیعت كلوئیدی(COLLOIDAL)  داشته كه می تواند منبسط شده و با ازدیاد حجم، تخریب بتن را باعث گردد. طریق دومی كه محلولهای سولفاتی قادر به آسیب رسانی به بتن هستند عبارتست از: تبدیل هیدروكسید كلسیم به نمكهای محلول در آب مانند گچ (GYPSUM) و میرابلیت MIRABILITE كه باعث تجزیه و نرم شدن سطوح بتن می شود و عمل LEACHING یا خلل و فرج دار شدن بتن به واسطه یك مایع حلال، به وقوع می پیوند.

بررسی کيفيت بتن با دوام در برابر خوردگی ميلگردها

بررسی کيفيت بتن با دوام در برابر خوردگی ميلگردها


 برای مشخص کردن بتن با دوام در برابر خوردگی ميلگردها روشهای مختلفی ارائه شده است که هر آزمايش و روش پيشنهادی به پارامتر معينی توجه دارد . آزمايشهای بسيار ساده تا بسيار مشکل و پر هزينه در اين مجموعه قرار دارد و معمولا" آزمايشهای دقيق تر و معتبر تر پر هزينه و زمان بر
می باشند . دست اندرکاران همواره بدنبال آزمايشهای ساده ، کم هزينه و سريع هستند هر چند از دقت کمتری ممکنست بر خوردار باشند .

معمولا" آزمايشهايي معتبر تلقی می گردند که مستقيما" به مسئله خوردگی ميلگردها می پردازند . آزمايشهای غير مستقيم همواره غير معتبرتر تلقی ميشوند ولی کاربرد آنها در دنيا رواج زيادی دارد .

آزمايشهای زير از جمله  اين موارد است و در هر بررسی بايد مشخص کرد که از کدام آزمايش زير بهره گرفته ايم .

 آزمايش جذب آب حجمی اوليه ( کوتاه مدت ) و نهائی ( دراز مدت ) بتن BS1881 و ASTM C 642

آزمايش جذب آب سطحی ( ISAT ) بتن BS 1881

آزمايش جذب آب موئينه بتن   RILEM

آزمايش مقاومت الكتريكي بتن
آزمايش نيم پيل ( پتانسيل خوردگی )  ASTM C 876
آزمايش پتانسيل و شدت خوردگی ) G 109 ) بروش گالوانيک
آزمايش شدت خوردگی بروش گالواپالس
آزمايش درجه نفوذ يون کلر بتن  AASHTOT259
آزمايش تعين عمق نفوذ يون کلر در بتن
10 - آزمايش تعين پروفيل يون کلر و ضريب نفوذ آن
  C114 و C1218 و ASTM C1152
11 - آزمايش شاخص الکتريکی توانائي بتن برای مقابله با نفوذ يون کلر
ASTM 1202
 
هرچند عنوان برخی استانداردها و يا شماره آن در بالا ذکر شده است اما اين آزمايشها ممکن است با تغييرات اندک و يا زياد در استانداردهای ديگر نيز انجام شود که نتيجه آن الزاما" مشابه به استانداردهای ديگر نيست و از مفهوم واحد برخوردار نمی باشند .
 

 آزمايش جذب آب حجمی اوليه کوتاه مدت و دراز مدت :

 انواع آزمايش جذب آب حجمی وجود دارد . شکل و ابعاد نمونه ، طرز خشک کردن ( دما و مدت ) ، نحوه قرارگيری در آب ، دمای آب ( معمولی و جوشان ) ، مدت قرار گرفتن در آب و نحوه گزارش نتيجه از موارد اختلاف استانداردهای مختلف می باشد . بسياری از استانداردها برای کنترل کيفيت قطعات بتنی پيش ساخته از اين آزمايش استفاده می نمايند . مکعبی 10 ×10 و استوانه ای کوچک به قطر 5/7 تا 10 سانتی متر از اشکال و ابعاد رايج است . دمای خشک کردن نمونه ها از 40 تا 110 درجه متغير می باشد. مدت خشک کردن از 24 ساعت ( دمای 110 ) تـــــــا 14 روز
( دمای 40 تا 50 ) پيش بينی شده است . در برخی استانداردها نحوه خاصی برای قرارگيری در آب و ارتفاع آب روی نمونه در نظر گرفته اند . دمای آب از 20 تا جوشانيدن آب منظور می شود . مدت قرار گيری در آب قرائت های مربوط به 10 دقيقه ، 30 و 60 دقيقه تا بيش از ســـــه روز
می باشد . در اکثر استانداردها تعريف جذب آب حجمی نسبت وزن آب جذب شده به وزن نمونه خشک اوليه است . لازم به ذکر است اگر بخواهيم اين ويژگی را در بتن های سبک با بتن معمولی مقايسه کنيم بهتر است نسبت حجم آب جذب شده به حجم نمونه را مد نظر قرار دهيم ، بهرحال مقايسه نتايج جذب آب حاصله از آزمايش طبق استانداردهای مختلف کاملا" گمراه کننده است . برخی کتب ، بتن ها را از نظر ميزان جذب آب طبقه بندی می نمايند . بطور مثال گفته می شود جذب آب اوليه مربوط به 30 دقيقه طبق BS1881 بهتر است کمتر از 2 درصد باشد تا بتنی با دوام داشته باشيم . معمولا" گفته می شود جذب آب کوتاه مدت برای کنترل دوام بتن معتبر تر است زيرا خصوصيات سطحی بتن را به نمايش می گذارد .

 جذب آب سطحی :

 اين آزمايش عمدتا" در انگليس کاربرد دارد و جذب يک جهته را در روی نمونه خاص در منطقه محدود اندازه گيری می نمايند . نوع خشک کردن اوليه بتن ، زمان و وسايل مربوطه در اين استاندارد مشخص شده است . اين آزمايش عملا" در ايران کاربرد کمی دارد.
جذب آب موئينه بتن :

 بسياری معتقدند مکانيسم جذب آب بتن در مناطق مرطوب ، جــــــذر و مد و پاشش آب يا شالوده های واقع در منطقه خشک و بالای سطح آب با مکانيسم جذب موئينه شباهت دارد . Rilem آزمايش جذب آب موئينه را بر روی نمونه های مکعبی 10 سانتی متری بصورت زير توصيه ميشود .

نمونه ها در دمای 40 تا 50 در آون خشک می شوند ، سپس چنان در بالای سطح آب
قرار می گيرد که 5 ميلی متر آن داخل آب باشد . در زمانهای مختلف و ترجيحا" پس از 3 ، 6 و 24 و 72 ساعت وزن نمونه اندازه گيری و وزن آب جذب شده تعيين می شود . سپس وزن آب
( حجم آب ) بر سطح نمونه ( حدود Cm2100 ) تقسيم می گردد تا ارتفاع معادل آب جذب شده بدست آيد . (i برحسب ميليمتر )

  C ثابت جذب موئينه و s ضريب جذب موئينه است . اين مقادير از برازاندن خطی بر نقاط
بدست آمده در صفحه مختصات---- بدست می آيد .

هر کدام از اين پارامتر ها دارای مفهوم خاصی است ولی s اهميت بيشتری دارد و آهنگ جذب را نشان می دهد و هر چه کمتر باشد بهتر است . در انتهای آزمايش گاه نمونه را شکسته و ارتفاع واقعی جذب آب را بطور متوسط بدست می آورند و برای اين منظور در آب ماده رنگی
( مانند لاجورد ) می ريزند . ارتفاع زياد موئينه نشانه خوبی برای بتن نيست . در واقع بتن هائی که خلل و فرج ريزي دارند ممکنست ارتفاع موئينه زيادی داشته باشند و اين نکته مهمی است که معمولا" در مفهوم نفوذ پذيری در برابر آب ، خلل و فرج ريزتر مطلوب تر تلقی می شوند .

آزمايش مقاومت الکتريکی بتن :

 خوردگی پديده الکترو شيميائی است . عملا" ميلگرد بصورت آندو بتن کاتد می شود و يک جريان الكتريکی بين ميلگرد و سطح بتن بوجود می آيد . مسلما" دراين حالت تحرک يون ها را شاهد هستيم . هر چه اين حرکت بيشتر و سهل تر انجام شود به مفهوم آنست که مقاومت در برابر تحرک يونی کمتر است و با هدايت الکتريکی بتن بيشتر می باشد . بنابراين بايد گفت يکی از راههای ساده آزمايش دوام بتن ، تعيين مقاومت ويژه الکتريکی آن می باشد . مقاومت الکتريکی بتن نيز مانند مقاومت هر جسم مرکب ديگر تابع اجزاء آن و ارتباط اجزاء با يکديگر است . مقاومت الکتريکی سنگدانه ها و خميــــــر سيمان سخت شده و نسبت مقدار هر يک در بتن و همچنين کيفيت وجه مشترک ( ناحيه انتقالی ) و مصرف افزودنيهای پودری معدنی تأثير زيادی در مقاومت الکتريکی بتن دارد . وجود رطوبت و اشباع مقاومت الکتريکی را کم می کند . وجود ترکهای ريز که با آب پر شود به شدت مقاومت الکتريکی را کاهش می دهد . حتی اگر بجای آب از محلول آب نمک يا آب دريا استفاده کنيم افت شديدی در مقاومت الکتريکی مشاهده خواهيم نمود . بنابراين سعی می شود مقاومت الکتريکی بتن های اشباع با آب نمک يا آب دريا اندازه گيری شود . اندازه گيری مقاومت الکتريکی ساده است . کافی است دو صفحه برنجی يا مسی را کاملا" در تماس با سطح نمونه بتن قرار دهيم و با يک اهم متر مخصوص ، مقاومت الکتريکی را بدست آوريم . اما اين مقاومت الکتريکی بايد بدون توجه به اثر ابعاد گزارش شود يعنی بايد مقاومت ويژه الکتريکی تعيين و اعلام گردد تا بتوان آنرا با ساير بتن ها مقايسه نمود . برای اين منظور از رابطه زير
استفاده می شود .

 مقاومت ويژه الکتريکی بتن بر حسب اهم متر

R مقاومت الكتريكي قرائت شده از دستگاه

A سطح نمونه ( سطح تماس صفحه برنجي با بتن )

L فاصله بين دو صفحه تماس ( طول نمونه )

  اعتقاد بر آن است که هرچه مقاومت ويژه الکتريکی بيشتر باشد بتن با دوام تر و مطلوب تری داريم.

  مقاومت ويژه الکتريکی بتن اشباع   نوع بتن از نظر دوام در برابر خوردگی

   بيشتر از 200   عالی

   200 -120   خوب

   120- 50    متوسط

    کمتر از 50     ضعيف

برای اتصال مناسب صفحه برنجی با بتن معمولا" لايه نازکی از خميــر سيمان نسبتا" شل را بکار می برند و صفحه را با فشار به خمير سيمان و سطح بتن چسبانيده و اندازه گيری را به انجام
می رسانند .

ميتوان گفت هيچ آزمايشی به سادگی و اعتبار اين آزمايش برای تعيين کيفيت بتن بويژه از نظر تحرک يون کلر و OH در داخل بتن نمی باشد . اما جالب است بدانيم اين آزمايش هنوز دارای دستورالعمل استانداردی نيست . هم چنين اختلاف نظر علماء بتن برای اندازه گيری R
( مقاومت اهمی ) و Z ( مقاومت ظاهری با در نظر گرفتن اثر القائی و خازنی ) بحث برانگيز است . برخی اعتقاد دارند کافی است R را بسادگی اندازه گيری کنيم و برخی معتقدند که در بتن اثر خازنی وجود دارد و بايد وسايلی را بکار برد که بتواند Z را مشخص نمايد ( بويژه در بتن های ميکروسيليس دار ) ، برخی نيز معتقدند که تفاوت چندانی بين Z و R عملا" وجود ندارد .

اميد است در آينده بتوان برای کنترل دوام بتن از اين آزمايش سريع و کم هزينه استفاده نمود و بايد دانست الزاما" مقاومت فشاری بيشتر به معنای مقاومت ويژه الکتريکی نمی باشد .

بتن های حاوی ميکروسيليس بسته به ميزان ميکروسيليس ، مقاومت الکتريکی 3 تا 10 برابر مقاومت الکتريکی بتن مشابه ولی بدون ميکروسيليس را دارا است در حاليکه مقاومت فشاری بتن ممکنست فقط 5 تا 15 درصد افزايش يابد . البته بايد گفت اندازه گيری مقاومت ويژه الکتريکی بتن سخت شده داخل قطعه کار دشواری است .

اگر ميلگرد و بتن را مانند يک مدار برقی در نظر بگيريم اختلاف پتانسيل ، مقاومت و شدت جريان در آن وجود دارد . بديهی است هر چه مقاومت الکتريکی بيشتر شود شدت جريان کمتر می گردد و شدت خوردگی نيز کم می شود . ضمن اينکه مقاومت الکتريکی بيشتر ، آغاز خوردگی را به تأخير می اندازد .

برخی اعتقاد دارند بايد مقاومت الکتريکی بتن سطحی ( پوشش روی ميلگرد ) را اندازه گيری کرد که منطقی بنظر می رسد .

 آزمايش نيم پيل ( Half Cell ) :

 همانگونه که گفته شد واقعا" يک جريان الکتريکی در بتن مسلح وجود دارد . پس بايد بتوان آن را اندازه گيری نمود . اگر يک سر سيم را به ميلگرد وصل کنيم و سر ديگر سيم را به کمک يک الکترود به سطح بتن مرطوب بچسبانيم و در اين فاصله ولت متری را قرار دهيم ، اختلاف پتانسيل را بر صفحه دستگاه مشاهده می نماييم که در حدود چند ده تا چند صد ميلی ولت است.

بسته به نوع الکترود مصرفی ، ولتاژ قرائت شده متفاوت خواهد بود و قابل تبديل به يکديگر
می باشند ، آزمايش نيم پيل دارای دستور العمل استاندارد برای کارگاه می باشد اما دستور استاندارد آزمايشگاهی ندارد . در کارگاه ASTM الکترود مس ـ سولفات مس را توصيه کرده است و در آزمايشگاه معمولا" از الکترود کالومل اشباع استفاده ميشود .

ASTM . C876 شروع فعاليت خوردگی را به صورت احتمالی و بشرح ذيل مشخص کرده است.

 

احتمال شروع فعاليت خوردگی اختلاف پتانسيل v با الکترود مس ـ سولفات مس (mv )

بيش از 90 درصد 350< v

حدود 50 درصد   200<350 < P>

کمتر از 10 درصد  v < 200

 

در اين آزمايش بايد ميلگردها بصورت متصل تداوم داشته باشند و قطع در آنها باعث اختلال در نتايج می گردد . بايد دانست که اين آزمايش فقط اختلاف پتانسيل موجود را به دست می دهد که پتانسيل خوردگی نام دارد و به هيچ وجه آهنگ خوردگی يا ميزان خوردگی ميلگرد را به نمايش نمی گذارد .

در آزمايشهای آزمايشگاهی معمولا" ميلگردی را داخل يک استوانه بتنی قرار می دهند و بخش عمده ای از بتن را در داخل آب دريا يا آب نمک ( با غلظت های متفاوت ) می گذارند و يک سر سيم را به ميلگرد خارج از آب و الکترود را داخل آب دريا يا آب نمک قرار می دهند و ولتــاژ را قرائت می کنند .

اين آزمايش مستقيما" کيفيت بتن را بدست نمی دهد فقط می توان کيفيت بتن را در مقايسه با يکديگر ارزيابی کرد ونشان داد کدام نمونه زودتر و کدام يک ديرتر فعاليت خوردگی را آغاز
می نمايند .

آزمايش نيم پيل و ارقام ذکر شده فقط برای ميلگردهای بدون پوشش ( گالوانيزه ، اپوکسی و .. . . ) کاربرد و مفهوم دارند و برای ميلگردهای پوشش دار و صنعت متفاوت خواهد بود.

 آزمايش پتانسيل و شدت خوردگی گالوانيکی ( ASTM G109 ) :

 هر چند دستور آزمايشگاهی فوق بصورت استاندارد برای تعيين تأثير افزودنيها بر خوردگی ميلگرد ارائه شده است اما اين آزمايش را با تغييرات خالص می توان برای تعيين کيفيت دوام بتن نيز بخوبي بکار برد .

در يک منشور بتنی دو رديف ميلگرد در بالا و پائين قرار داده می شود که سر و ته آنها مارپيچ شده است و بين آنها يک مقاومت 100 اهمی قرار دارد . در بالای منشور يک حوضچه چسبانيده ميشود و داخل آن با آب نمک ( غلظت 3 درصد و بيشتر ) می ريزيم . نفوذ آب نمک باعث
آند شدن ميلگرد فوقانی و کاتد شدن ميلگرد تحتانی می شود و خوردگی گالوانيکی رخ می دهد .

بين دو ميلگرد ميتوان اختلاف پتانسيل و مقاومت الکتريکی را بدست آورد ( با وجود مقاومت
100 اهمی يا بدون آن ) همچنين می توان اختلاف پتانسيل و مقاومت الکتريکی بين حوضچه و ميلگرد فوقاني ( بدون مقاومت 100 اهمي ) و مانند آن اختلاف پتانسيل و مقاومت الكتريكي بين

 حوضچه و ميلگرد تحتاني را تعيين نمود . برای اين کار از الکترود کالومل اشباع در داخل حوضچــه استفاده می گردد . ضمن اينکه هر اندازه گيری حاوی مفهوم خاصی است اما دستور استاندارد ASTM G109 فقط در هر زمان شدت جريان عبوری بين ميلگردها را با توجه به وجود مقاومت 100 اهمی بر حسب . A  m بدست می آورد ( از تقسيم اختلاف پتانسيل به مقاومت ) و سپس مقدار کل جريان را بر حسب کولن با عنايت به رابطه زير بدست می آيد . از تقسيم شدت جريان به سطح جانبی ميلگرد نيز شدت خوردگی بر حسب  ---حاصل می شود . بالا بودن شدت خوردگی و همچنين کل جريان می تواند نشان دهنده کيفيت پائين بتن باشد .

آزمايش ---در اصل از يك بتن فاقد ريز دانه بهره مي گيرد كه بسيار نفوذ پذير است
( مانند آبكش سوراخ مي باشد ) و لذا اطراف نمونه با اپوكسي اندود ميگردد . در حاليكه در آزمايش تغيير يافته ، بتن مورد نظر طبق طرح اختلاط پروژه ساخته ميشود و ميتوان از اپوكسي براي
اندود كردن سطوح جانبي بهره گرفت و يا بدون اپوكسي آزمايش را به انجام رساند.

بهرحال اين آزمايش قابليت هاي زيادي را براي به نمايش گذاردن كيفيت بتن در امر خوردگي دارد و تفسير نتايج آن هم جالب و مشكل مي باشد .

 آزمايش پتانسيل و شدت خوردگي به روش گالواپالسن :

 در اين آزمايش نيز نمونه هائي شبيه به آزمايش نيم پيل تهيه ميشود و يا ميتوان در محل كارگاه بر روي قطعات موجود اين آزمايش را انجام داد . ضمن تعيين اختلاف پتانسيل خوردگي ،
افزايش هاي جزئي در پتانسيل ايجاد شده و شدت جريان مربوطه اندازه گيري ميشود . در اين آزمايش مقاومت الكتريكي نيز بدست مي آيد و با توجه به روابط موجود شدت خوردگي
( آهنگ خوردگي ) ميلگردها تعيين مي گردد . اين آزمايش بسيار مهم و معتبر مي باشد اما انجام آن مشكل و نتيجه گيري از آن نياز به تبحر و تخصص دارد .

 

آزمايش تعيين عمق نفوذ يون كلر :

 در اين آزمايش نمونه هائي كه در معرض يون كلر بوده اند ( آزمايشگاهي يا كارگاهي ) را بريده و مقطع را در معرض پاشش محلول نيترات نقره قرار ميدهند . پس از مدتي محل حاوي يون كلر سفيد شيـــري شده و با گذشت زمان سياه ميشود و ميتوان عمق نفوذ يون كلر را با دقت كمتر از 2/0 ميلي متر اندازه گيري نمود . مسلما" در اين آزمايش بايد نمونه هاي اوليه تقريبا" فاقد يون كلر باشند و يا ميزان آن از آستانه حساسيت عملكرد محلول نيترات نقره كمتر باشد يا بتوان نفوذ يون كلر را مشاهده نمود .

در اين آزمايش مقادير يون كلر در بتن بدست نمي آيد . پروفيل يون كلر و ضريب نفوذ آن نيز قابل تعيين نيست .

 آزمايش تعيين پروفيل يون كلر و تعيين ضريب نفوذ :

 اين آزمايش يكي از مهمترين و مشكل ترين آزمايشهاي موجود است كه به تعيين پروفيل يون كلر و ضريب نفوذ آن مي انجامد . وقتي نمونه اي در آزمايشگاه يا محل و همچنين قطعه بتني در محل در معرض يون كلر بويژه در مدت طولاني قرار گيرد ميتوان اين آزمايش را با دقت خوب انجام داد .

براي اين منظور در زمان معين و مورد نظر ، پودر نمونه بتني كه مربوط به عمق معيني است تهيه شده و مقدار يون كلر موجود در بتن طبق ASTM C114 تعيين ميشود . براي تهيه پودر بتن و آماده سازي آن از دستور ASTM C1152 ( يون كلرمحلول در اسيد ) و يا ASTM C1218
( يون كلر محلول در آب ) استفاده ميشود . در اين آزمايش از روش پتانسيو متري براي تيتر كردن با محلول نيترات نقره استفاده ميشود . اين روش بسيار دقيق است و تا كنون روش ديگري با اين دقت ابداع نشده است .

معمولا" نتيجه اين آزمايش بصورت درصد يون كلر در بتن و يا درصد يون كلر بتن نسبت به وزن سيمان گزارش ميگردد . محدوديت يون كلر در بتن اوليه و يا گزارش يون كلر بتن قديمي ، بصورت درصد نسبت به وزن سيمان بيان ميشود و بايد مشخص گردد طبق كدام روش (محلول در اسيد يا محلول در آب ) انجام شده است .

براساس نتيجه حاصله ، پروفيل يون كلر رسم ميگردد . محور افقي عمق نمونه ( متوسط ) و محور قائم درصد يون كلر است .

با توجه به نتايج حاصله و ميزان يون كلر اوليه در بتن طبق قانون دوم Fick ، ميتوان ضريب نفوذپذيري ( انتشار ) بتن در برابر يون كلر را بدست آورد ( Diffusivity Coeficient ) . اين ضريب با ديمانسيون L2/T  بيان ميشود . حل معادلات مربوط به قانون دوم فيك با تقريب ها و روش هاي خاص انجام ميشود كه نتايج متفاوتي را بدست ميدهد . افزايش ضريب انتشار نشانه نفوذپذيري بيشتري بتن در برابر يون كلر است .

 آزمايش درجه نفوذ (مقاومت) بتن در برابر يون كلر :

 طبق AASHTO T259 كه يكـــــي از قديمي ترين روشهاي آزمايش مربوط به نفوذ يون كلر مي باشد صرفا" مقاومت و درجه نفوذ در برابر يون كلر بدست مي آيد و نميتواند معيار كمي براي عمر مفيد بهره برداري از قطعه را ارائه دهد . نمونه هاي بتن چهار دال به ابعاد 305 × 305
ميلي متر و ضخامت 76 ميلي متر است در اين روش بالاي نمونه هاي بتني پس از 28 روز
( يا هر سن مورد نظر ) در حدود 3 ميلي متر سائيده شده و يك حوضچه كوچك روي آن
قرار مي گيرد . نمونه ها 14 روز در محيط مرطوب نگهداري و 14 روز خشك شده است و سن 28 روزه دارند . در حوضچه محلول نمك طعام 3 درصد ريخته و 90 روز در ان مي ماند . پس از
90 روز ، دال ها خشك شده و نمك روي آن پاك ميشود . از دالها سه نمونه بايستي از عمقهاي 6/1 تا 13 ميلي متر و 13 تا 25 ميلي متر تهيه شود و طبق AASHTO T260 مقدار يون كلر آن بدست آيد .

مقدار متوسط يون كلر در هر عمق مورد نظر بايد تعيين شود . ( قبل از نفوذ يون كلر و پس از آن ) اختلاف اين دو بايد محاسبه شود . مقدار متوسط يون كلر جذب شده و حداكثر ان بايد
گزارش گردد .

 آزمايش شاخص الكتريكي قابليت مقابله بتن در برابر نفوذ يون كلر :

 در آزمايش ASTM C1202 مقدار جريان الكتريكي عبوري از استوانه ها با مغزه هاي بتني به قطر 102 ميلي متر و ضخامت 51 ميلي متر در مدت 6 ساعت با اختلاف پتانسيل ثابت 60 ولت
( جريان مستقيم ) بدست مي آيد . يك نمونه در محلول نمك طعام و ديگري در سود روز آمد
قرار دارد . مقدار كل جريان برحسب كولمب نمايانگر مقاومت بتن در برابر نفوذ يون كلر است و بصورت زير طبقه بندي ميشود .


 نفوذ پذيري بتن در برابر يون كلر جريان عبوري ( كولمب )

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

 زياد  بيش تر از 4000

 متوسط   4000-2000

 كم   2000-1000

 خيلي كم    1000-100

 ناچيز   كمتر از 100

 همانگونه كه ديده ميشود آزمايشهاي متعددي براي كنترل دوام بتن بويژه در برابر يون كلر ابداع شده است كه بخشي از آنها كه در ايران رايج تر مي باشد از نظر گذشت . آزمايشهاي ديگري نيز در كشورهاي مختلف دنيا مانند ژاپن و كشورهاي اسكانديناوي وجود دارد و هنوز اين آزمايشها در مراحل گسترش و توسعه هستند . از جمله مشكلات كار اين است كه هنوز ارتباط دقيقي بين نتايج آزمايشها و بحث خوردگي بدست نيامده است تا بتوان عمر قطعه را تعيين كرد . ضريب نفوذ
يون كلر و يا آزمايشهاي شدت خوردگي از همه آزمايشها كاربردي تر هستند و ميتوان بر اساس آنها عمر را تخمين زد .

با اين حال خوردگي نياز به سه عنصر يون كلر ، رطوبت و اكسيژن دارد و وجود هر كدام به تنهائي نميتواند خوردگي در ميلگرد بتن بوجود آورد . برخي معتقدند قليائيت بتن نيز در شروع خوردگي مؤثر است كه منطقي بنظر ميرسد بنابراين با نتايجي كه از اين آزمايشها بدست مي آيد نميتوان دقيقا" دوام را تخمين زد .

توصيه ميشود تا پيشرفت علمي بيشتر در اين زمينه از ضوابط آئين نامه اي استفاده گردد . سعي شده است نرم افزارهائي براي تخمين عمر سازه هاي بتن مسلح تهيه شود كه در آنها اطلاعات جغرافيايي و محيطي وجود دارد و با دادن اطلاعاتي در مورد قطعه ، ميلگرد و بتن موجود
( خصوصيات بتن شامل نوع سيمان ، نسبت آب به سيمان ، عيار سيمان و افزودني ها ) بتوان عمر سازه را حدس زد . در ايران نيز اقداماتي براي تهيه اين نرم افزار با توجه به شرايط محيطي موجود و اطلاعات ديگر محلي و داده هاي لازم در حال انجام است و سعي ميشود نقايص نرم افزارهاي قبلي اصلاح گردد .

 
تخريب بتن ، آماده سازي محل تعمير و ميلگردها ، مواد و روشهاي تعمير
 

مقدمه :

در تعمير بتني كه در اثر خوردگي تخريب شده است بايد اصول خاصي رعايت گردد تا مشكلات قبلي بزودي گريبانگير قطعه نشود . براي اين منظور بايد به نظارت زير توجه گردد :

 كنترل وسعت خرابي با بررسيهاي نظري كارگاهي و انجام آزمايشهاي ساده

تعيين وسايل تخريب و روش كار

تعيين محدوده خرابي و شيار زني براي مشخص كردن محدوده

هندسه تخريب

عمق تخريب

بررسي ميلگردها و تصميم گيري در مورد گسترش تخريب
زنگ زدائي و اصلاح ميلگردها و تقويت و جايگزيني ميلگردها

آماده سازي سطح بتن و ميلگردها و اعمال پوشش هاي لازم ، اشباع كردن و . . .

مواد تعميري و كاربرد آنها

 روشهاي تعمير و بكار گيري آنها

 كنترل وسعت خرابي ( بررسيهاي نظري و آزمايشي ) :

 با توجه به بازديدهاي انجام شده و احتمالا" برخي آزمايشهاي ساده ميتوان به وسعت تقريبي خرابي پي برد . متاسفانه هنــوز روشي براي تعيين محلهائي كه ميلگرد آنها بطور قابل توجهي زنگ زده اند وجود نــــدارد . نشانه هاي  زنگ زدائـي زياد ، لكه ، ترك خوردگي ، طبله كردن و ريختن بتن مي باشد . با آزمايش ساده نيم پيل ميتوان پتانسيل خوردگي را بدست آورد اما ميزان زنگ زدگي و آسيب نمايش داده نميشود . با زدن چكش اشميت يا چكش معمولي و با توجه به نتيجه يا صداي حاصله نيز ميتوان تا حدودي وضعيت بحراني را آشكار كرد . متاسفانه اشكال رايج عمده در تعمير سازه هاي بتني مشخص نبودن دقيق منطقه و محدوده تعميرات و گاه ممكنست وسعت تخريب و تعمير چندين برابر تخمين اوليه گردد .

 تعيين وسايل تخريب و روش آن :

 با توجه به وسعت تخريب ، نوع بتن و مشكلات تخريبي آن ، انبوهي ميلگردها و موقيت قرار گيري قطعه و همچنين محدوديت هاي زماني و هزينه اي نوع وسيله تخريب و روش كار مشخص ميگردد.

گاه لازم است سرعت زيادي در تخريب بخرج نداد زيرا در صورت عدم امكان تعمير ، مجاورت بتن و ميلگرد با عناصر مضر ممكنست در طولاني مدت مشكلات جديدي را بوجود آورد .

امروزه استفاده از وسايل مختلفي امكان پذير است : قلم ( چكش ) بادي ، برقي ، اره هاي اصطكاكي، جهت آب و برش با آب از جمله وسايل رايج است كه از همه آنها ميتوان برش با آب
( جهت آب ) را بهتر و مناسب تر دانست . بهرحال وسعت كار و محدوديت هاي موجود فوق الذكر تعيين كننده نوع وسايل مي باشد . برخي چكش ها ممكنست در مناطق مجاور آسيب هائي را ايجاد كند كه بايد وسايل با قدرت مناسب را انتخاب نمود. اره هاي اصطكاكي عمدتا" براي
برش هاي خطي بكار ميرود .

 تعيين محدوده خرابي و شيار زني :

 براي اينكه محدوده كار تخريب روشن شود گاه علائمي را بكار مي برند . بهترين روش علامت زني بصورت شيار زني در محدوده مورد نظر است . شيار زني به عمق 1 تا 2 سانتي متر بدين منظور معمول است ميتواند هندسه مناسب تخريب را در سطح و عمق بوجود آورد . بهرحال گاه در طول عمليات تخريب ممكنست اين محدوده را وسعت بخشيم و گسترش دهيم و بهتر است مجددا" محدوده جديد را شيار زني كنيم .

 هندسه تخريب :

 توصيه ميشود از شكلهاي هندسي مشخص براي محدوده تخريب استفاده شود . مربع ، مستطيل و تركيبي از مربع و مستطيل در كنار هم ميتواند بهترين اشكال باشد . البته شكل دايره و چند ضلعي منظم نيز توصيه ميشود . بهرحال اشكال نا منظم با دوره هاي بي نظم ابدا" توصيه نمي گردد .

كناره و لبه منطقه تخريب ( تعمير ) بايد گونيا باشد و اين حالت 1 تا 2 سانتي متر در عمق
ادامه يابد و لبه نبايد پركلاغي تلقي گردد زيرا دوام مناسبي برا پس از تعميرنخواهيم داشت .

 عمق تخريب :

 مشكلي بزرگ در تعمير اينگونه سازه ها تعيين عمق تخريب است . مسلما" عمق تخريب تا پشت ميلگردها خواهد بود . نميتوان تخريب را تا رسيدن به سطح ميلگردها انجام داد زيرا لازمست ميلگردها را تميز و اصلاح نمود بنابراين بايد تخريب را تا پشت ميلگردها ادامه داد . عمق تخريب بايد تا حدي انجام شود كه به منطقه اي با يون كلر كم برسيم . رسيدن به يون كلر كمتر از حد آستانه خوردگي قطعي است اما حد قابل قبول تابع سياست هاي تعميرات اگر حد آستانه خوردگي را 35/0 درصد و حداقل يون كلر بتن اوليه تازه را 15/0 درصد در نظر بگيريم بهرحال حد قابل قبول در بين اين دو عدد قرار دارد و هر چند به 15/0 درصد نزديك شود عمر تعمير و ميلگرد بيشتر خواهد شد اما ممكنست هزينه ها را به مقدار قابل توجهي افزايش دهد و يا عمر بخش هاي تعمير نشده بمراتب كمتر از عمر مناطق تعمير شده باشد كه منطقي بنظر نميرسد .

بهترين راه تهيه نمونه از عمق هاي مختلف و تعيين يون كلر مي باشد تا تصميم گيري در مورد عمق تخريب ميسر گردد . وقتي تا پشت ميلگرد تخريب را ادامه مي دهيم بايستي امكان قرار گيري بتن در اطراف ميلگرد را فرآهم كنيم . به اين منظور حداقل فاصله ميلگرد تا بتن بايستي از حداكثر اندازه سنگدانه مصرفي بزرگتر باشد . برخي توصيه مي كنند در اين مورد بهتر است اين فاصله بمراتب بزرگتر از حداكثر اندازه سنگدانه مصرفي و در حدود 3 سانتي متر باشد .

 بررسي ميلگردها و اتخاذ تصميم در مورد گسترش تخريب :

 پس از تخريب و رسيدن به ميلگردها بايد كارشناس خبره ، ميزان خوردگي را بررسي كند وقتي در محدوده تخريب زنگ زدگي زيادي مشاهده مي شود و اين زنگ زدگي در منطقه سالم نيز تداوم دارد بايستي منطقه تخريب را گسترش داد تا به ميلگرد سالم و تقريبا" بدون زنگ زدگي رسيد . وقتي زنگ زدگي با ناخن پاك نشود به ميلگرد سالم نرسد بايد آنرا تميز كرد و لازمست كه بتن روي آن برداشته شود .

 زنگ زدائي ، اصلاح ميلگردها ، تقويت و جايگزيني :

 ميلگردها معمولا" در محل با سندپلاست يا گريت پلاست بايد تميز شود . در اين حالت بايد پشت ميلگردها تميز شود زنگ زدائي با برس سيمي دستي يا برقي معمولا" كارآمد نيست و فقط در مناطق بسيار محدود و براي زنگ كم كاربرد دارد . اگر لازم باشد بايد ميلگردها تقويت شود . بكارگيري ميلگردهاي تقويتي امري رايج و معمول است . اين كار با توجه به كاهش ضخامت ميلگردها عملي ميشود . معمولا" اگر كاهش سطح ميلگردها بيش از 15 درصد باشد تقويت توصيه ميشود ( برخي كاهش قطر 15 درصد را نيازمند تقويت مي دانند ) . گاه ميلگردها به شدت
زنگ زده اند و در اين حالت توصيه ميشود با ميلگردهاي جديد جايگزين شوند . تأمين پوشش طولي ميلگردها (Overlap ) مشكل است و اغلب از وصله هاي جوشي يا مكانيكي ميتواند
استفاده شود .

وقتي از زنگ زدائي ميلگرد بهره مي گيريم بهتر است هيچگونه رنگي بر روي ميلگرد باقي نماند و كاملا" تميز شوند .

 آماده سازي سطح بتن و پوشش ميلگردها :

 مقصود از آماده سازي سطح بتن و پوشش ميلگردها آنست كه بتوانند اتصال بتن با بتن و بتن با ميلگرد را تأمين نمايند و مانع نفوذ بيشتر و خوردگي شوند .

آماده سازي سطح بتن معمولا" با زبر كردن آن و رسانيدن به حالت اشباع با سطح خشك حاصل ميگردد . اغلب اوقات تخريب ، سطح زبر و خشني را فرآهم مي كند بهر حال اين سطح نبايد پستي و بلندي خيلي زيادي داشته باشد اما ضمن اينكه ضخامت تعمير نسبتا" ثابتي را فرآهم مي نمايد بايد كاملا" زبر و خشن باشد و ترجيحا" شن ها از سطح بر واحد اضافه شوند .

بتن قديمي ( پايه ) نبايد آب بتن جديد ( ماده تعميري ) را بمكد زيرا باعث جمع شدگي شديدتر شده و پيوند دو بتن ضعيف مي گردد . بنابراين لازمست بتن پايه بصورت SSD درآيد . آب اضافي در روي سطح بتن به نحوي كه دست را خيس و مرطوب كند نامطلوب است و باعث ضعف اتصال و پيوستگي دو بتن مي شود .

براي ايجاد پيوستگي و چسبندگي بهتر دو بتن جديد و قديم گاه از برخي پليمرها و لاتكس ها بر روي بتن پايه ( قديمي ) استفاده مي شود . يك لايه نازك از اين مواد قبل از ريختن بتن تعميري جديد بر روي بتن قديمي ماليده يا پاشيده مي شود. از جمله مواد رايج لاتكس آكريليكي
( Acrylic Latex ) مي باشد و قبل از خشك شدن كامل آن بتن جديد بايد ريخته شود .

سطح ميلگردها پس از تميز كاري و زنگ زدائي ، گاه لازمست با آب شيرين شسته شده و سريعا" با هواي فشرده خشك گردد و در صورت لزوم با پوشش هاي خاصي نظير اپوكسي پوشيده شود . بهرحال توصيه ميشود در تعمير سازه از اپوكسي معمولي مخصوص ميلگردها استفاده نشود و اپوكسي غني شده با روي بكار رود تا سطح ميلگرد عايق الكتريكي نشود ، زيرا در غير اينصورت ميلگردهاي بخش تعمير نشده دچار خوردگي بسيار سريعتر مي گردد .

مواد تعميري :

 اصل مهم در انتخاب مواد تعميري شباهت آن از نظر خواص با بتن اصلي است معمولا" اين اصل به نوعي برآورده ميشود اما بايد سعي كرد حتي الامكان رعايت گردد . مشكل بزرگ در رعايت اين مورد آن است كه اگر بتن اصلي قديمي مناسب و مطلوب بود ممكن بود اين خرابي ها حاصل نشود. ضعف مقاومت ، ضعف دوام و بالا بودن نفوذپذيري باعث اين خرابي شده است پس چگونه ميتوان بتن مشابه را بكار برد . بنابراين دچار يك پارادوكس هستيم كه با تدبير مناسب آن را حل كنيم . شباهت در سنگدانه ، شباهت در سيمان ميتواند كمك مؤثري باشد . نزديك بودن
مدول الاستيسيته و ضريب انبساط حرارتي از جمله نكات مهم است ، گاه ديده مي شود
نفوذ پذيري بسيار كم در منطقه تعمير شده ، باعث خوردگي سريع ميلگردهاي منطقه مجاور ميشود و اين نكته مهم كار تعمير را با مشكل مواجه مي كند و اجتناب ناپذير بنظر مي رسد .

 ←  انواع مواد تعميري بصورت جايگزين بتن تخريب شده عبارتند از :

الف - بتن يا ملات سيماني

ب-  بتن يا ملات سيماني اصلاح شده با پليمر
ج – مواد پليمري ( كه در اين حالت اقتصادي و فني نيست )

 بنظر ميرسد معمولا" بتن يا ملات سيماني ارجحيت داشته باشد و از نظر خواص مشابهت بيشتري با بتن اصل پايه را فرآهم نمايد .

بكار گيري سيمان در حد متوسط ( معمولا" 375 تا 400 كيلو ) از نظر جمع شدگي كاملا" مناسب بنظر ميرسد . نسبت آب به سيمان با توجه به موقعيت قطع و محل از نظر خوردگي به حداكثر
 4/0 يا 45/0 محدود شود . معمولا" اگر از روش بتن ريزي جايگزين استفاده شود سعي ميگردد از اسلامپ بالائي برخوردار باشيم ( پيش از 10 سانتي متر ) . اسلامپ زياد جمع شدگي نشست خميري را بوجود مي آورد لذا ضمن اينكه تأمين نسبت آب به سيمان فوق الذكر مشكل بوده و اسلامپ زياد نيز با آب قابل تأمين نيست همواره نياز به مواد روان كننده يا فوق روان كننده داريم .

معمولا" هنگاميكه تعمير در محدوده بسته اي انجام ميشود بتن بايد از جمع شدگي ناچيز و يا انبساط جزئي برخوردار باشد . به اين دليل لازمست از مواد منبسط كننده ( انبساط زا ) در مواردي كه حساسيت وجود دارد استفاده نمائيم تا درگيري بهتري بين لبه هاي كناري بتن تعميري و
بتن پايه قديمي ايجاد شود .

براي سهولت در ريختن و تراكم بتن و كاهش نفوذپذيري آن از حداكثر اندازه سنگدانه نسبتا" كم و بافت دانه بندي ريزتري نسبت به بتن اصلي بهره مي گيريم كه به ابعاد و حجم منطقه تعميري و وضعيت ميلگردها بستگي دارد .

اگر بخواهيم ملات يا بتن را با مواد پليمري اصلاح كنيم معمولا" از لاتكس آكريليكي به ميزان 10 تا 20 درصد وزن سيمان استفاده مي نمائيم .

گاه بجاي ريختن معمولي بتن از روش دستي تعمير استفاده مي نمايند در اين حالت ملات سفت بكار ميرود و با فشار در محل مورد نظر قرار مي گيرد . بهر حال اين روش محدوديتهاي خاص خود را دارد و تأمين رواني مورد نظر با نسبت آب به سيمان مطلوب و سيمان كمتر ممكن مي باشد .

 روشهاي تعمير و جايگزيني بتن :

 بهر حال بايد بتني را در محل تخريب شده جايگزين نمائيم. روشهاي اين جايگزيني عبارتند از :

 الف- تعمير و جايگزيني بتن يا ملات با دست Patch Method

 كه در مناطق بسيار محدود بكار ميرود . ضخامت نيز معمولا" به حدود 5 سانت محدود ميشود و كمتر مورد استفاده است . تعمير سطوحي مانند زير دال يا تير با اين روش ساده تر است .

 ب- روش بتن ريزي سنتي معمولي ( ثقلي ) Conventional or Gravity Method

 اين روش كار برد وسيعي دارد . براي سطوح بالائي تير و دال ، وجوه كناري تيرها ، سطوح ديوار و ستون و حتي قسمت تحتاني تير يا دال كاربرد دارد . معمولا" در اين روش نياز به اسلامپ زيادي داريم كه گاه از بتن هاي آبكي با اسلامپ بيش از 20 سانتي متر استفاده ميشود . بهر حال در اين روش بايد بنحوي عمل نمائيم كه از پر شدن قالب يا محل تعمير مطمئن شويم و خروج هوا از بتن نيز ميسر باشد و آب انداختن بتن عملا" حذف گردد ( بويژه در سطوح زير تير يا دال ) گاه اين نوع بتن را در عمق يا زير آب با لوله ترمي ( tremie ) مي ريزيم تا جداشدگي پيش نيايد .

 ج : روش بتن پاشي Shotcrete

 در تعمير سطوحي با وسعت زياد و ضخامت كمتر از 15 سانتي متر استفاده از روش بتن پاشي توصيه ميشود بويژه در تعمير سطوح زيرين دال يا تعمير كاربرد آن مطلوبتر است . در بتن پاشي دو روش تر و خشك را داريم . در تعمير سازه هائي كه در مناطق خورنده قرار دارند و يكنواختي و
نفوذناپذيري بيشتر مطلوب است بايد از روش تر استفاده نمائيم .

مشكل بزرگ در بتن پاشي ، برگشت و ريباند مصالح و بتن مي باشد كه بايد با كاهش حداكثر اندازه سنگدانه ، اسلامپ مناسب ( 5 تا 8 سانتي متر) ، عيار سيمان بالاتر و چسبندگي بيشتر ،
بافت دانه بندي ريزتر ، عمود گرفتن سر لوله ، فاصله مناسب سرلوله از سطح در تامين فشار هواي مناسب و غيره ، ميزان برگشت مصالح را به حداقل رسانيد .

 د : روش بتن ريزي با سنگدانه پيش اكنده ( Preplaced Aggreate Concrete ) :

 در اين روش ابتدا سنگدانه درشت تك اندازه را در قالب ريخته و سپس از درون لوله هائي كه درون سنگدانه قرار گرفته است ملات ريز دانه اي را به داخل سنگدانه هاي درشت پيش آكنده تزريق
مي نمائيم تا بتن مناسب حاصل گردد .

بتن پيش آكنده از جمع شدگي ناچيزي برخوردار است و عيار سيمان مصرفي آن نيز كم مي باشد . تأمين نسبت آب به سيمان كم ، نفوذ ناپذيري مطلوب و مقاومت زياد با اين روش كاملا"
ميسر است . همگني بتن و عدم جداشدگي از ويژگيهاي اين نوع بتن ريزي است . حداكثر اندازه سنگدانه به ---- حداقل بعد قطعه محدود مي شود و حداكثر اندازه ماسه ملات بايد به حدود ------ حداقل اندازه اسمي سنگدانه درشت محدود گردد .

ملات مصرفي بسيار پر عيار بوده و همچنين شل و آبكي مي باشد و معمولا" از مواد پوزولاني مناسب و روان كننده ها در ملات استفاده ميشود ضمن اينكه به كندگير كننده ها نيز احتياج مبرمي داريم .

 هـــ : بتن ريزي با بتن مكيده (Vacuum Proiossed Con  ) :

 در اين روش كه امروزه از آن در عمليات تعمير بتن استفاده چنداني بعمل نمي آيد . بتن نسبتا" شل را در محل مورد نظر ( بويژه سطوح فوقاني دال ، كف و سر ريز سدها يا كف تونلهاي آب بر و غيره ) ريخته و سپس با اعمال يك مكش از طريق فرش خلا ، بخشي از آب بتن را مكيده و نسبت آب به سيمان را كاهش مي دهيم . اين عمل مقاومت و دوام بتن تعميري را بهبود مي بخشد و نفوذپذيري آن بويژه در قسمت هاي سطحي كاهش مي يابد .

 در پايان متذكر ميشود كه در بتن ريزي جايگزيني نبايد از بتن در مرحله گيرش استفاده نمود . جداشدگي يكي از روشهاي بتن ريزي در كشور ماست كه نبايد در بتن جايگزين بوجود آيد . اختلاف دماي بتن پايه و تعميري در هنگام ريختن نبايد زياد باشد و حداكثر آن از 5 تا 10 درجه مشخص شده است . كار تراكم بايد بخوبي انجام شود . همچنين بايد عمل آوري مناسب
صورت گيرد دماي بتن نبايد از 30 درجه سانتي گراد در هنگام ريختن تجاوز نمايد و از 10 درجه سانتي گراد كمتر نشود .

الیاف در بتن

الیاف در بتن

تاكنون مشخص شده است كه انواع الیافها می توانند ظرفیت كرنش مقاومت دربرابر ضربه میزان جذب انرژی مقاومت سایشی و مقاومت كششی بتن را افزایش دهند. بطور كلی برای كاربرد در سازه الیاف فولادی میتواند نقش مكملی برای میلگرد داشته باشد.  الیاف فولادی با پخش  تركها مقابله  میكنند و مقاومت  بتن را در برابر خستگی ضربه جمع شدگی وتنشهای حرارتی افزایش داده و بتن در همه مدهای شكست روی خواص مكانیكی بتن تاثیر مثبت میگذارد.از اهم متغیرهایی كه بر خواص بتن با الیاف فولادی اثر میگذراند میتوان به خواص ماتریس بتن بازدهی الیاف و مقدار الیاف اشاره كرد.تكنولوژی بتن پرمقاومت توسعه ای جدید در صنعت ساخت سازه های بتنی محسوب میشود.


در بتن سخت شده مقاومت و دوام دو عامل اصلی بوده وهر چه مقاومت فشاری بتن بیشتر می شود بتن تردتر شده ودر نتیجه مقاومت كششی آن به نسبت افزایش مقاومت فشاری افزایش نمی یابد و نیز از تحمل كرنش پایینتر برخوردار است. بدین دلیل نیاز به استفاده از الیاف در بتن پرمقاومت كاملا مشهود است .جهت افزایش مقاومت كششی و جلوگیری از گسترش ترك و بویژه افزایش نرمی از الیاف در بتن استفاده میشود. مقدار افزایش با تغییر این مقاومت ها بستگی به مقاومت بتن بدون الیاف شكل الیاف ودرصد الیاف دارد.

بتن پرمقاومت شامل الیاف فولادی، تركیبی است از سیمان، مصالح سنگی، آب، فوق روان كننده، دوده سیلیس وهمچنین درصدی از الیاف فولادی كه بطور درهم و كاملا اتفاقی ودر جهات مختلف در مخلوط پراكنده شده است. وجود الیاف فولادی مشخصات مکانیکی بتن را نسبت به حالت بهبود می‌بخشد. بتن پرمقاومت یك ماده ترد وشكننده است در حالیكه افزودن الیاف فولادی به بتن پرمقاومت سبب بهبود رفتار ترد بتن وتغییرمد شكست آن می‌گردد. مزایای بتن الیافی در مقایسه با بتن بدون الیاف را می توان بطور خلاصه بشرح ذیل بیان داشت:

1. مقاومت د‍ر مقابل تورق وسایش

2. مقاومت در مقابل تنش های خستگی

3. مقاومت عالی در مقابل ضربه

4. قابلیت كششی وظرفیت زیاد تغییر شكل نسبی

5. قابلیت باربری بعد از ترك خوردگی

6. افزایش در میزان جذب انرژی

قابلیت انعطافی كه بتن الیافی دارد همانند خواص مواد پلاستیكی باعث می شود كه بتن الیافی گسیختگی ناگهانی نداشته باشد. از آنجا كه الیاف فولادی در جسم بتن در همه جهات پراكنده می شود در صورت تشكیل یك ترك در جهات مختلف الیاف اتصالاتی را بوجود آورده و از گسترش ترك جلوگیری می نماید. بنابراین رشته های الیاف بطور فعال در محدود كردن عرض ترك وارد عمل شده و با تشكیل ریز تركهای زیاد قابلیت بهره برداری بتن را افزایش می دهند.

انواع الیاف و الیاف فولادی

انواع الیافی كه در بتن استفاده می شود و در اشكال و اندازه های مختلفی تولید می شود عبارتند از الیاف شیشه ای ، الیاف پلاستیكی و الیاف فولادی . پارامتر مناسب كه یك رشته از الیاف را تعریف می كند نسبت ظاهری می باشد  كه نسبت طول الیاف به قطر معادل الیاف است. مقدار نسبت های ظاهری (l/d) معمولاٌ بین 30 تا 100 است .   

مكانیزم عملكرد الیاف در بتن

بطور كلی برای كاربرد در سازه الیاف فولادی می توانند نقش مكملی برای میلگرد داشته باشند.الیاف فولادی با پخش تركها مقابله می كنند و مقاومت بتن را در برابر خستگی ضربه جمع شدگی وتنشهای حرارتی افزایش می دهند.

الیاف فولادی می توانند در همه مدهای شكست روی خواص مكانیكی بتن تاثیر بگذارند‌‌.

مكانیزم تقویت را می توان بصورت زیر توجیه كرد:

تنشها بوسیله برش محیطی ودر صورتیكه رویه الیاف آجدار باشد بوسیله مقاومت چسبندگی (درون سطحی) از ماتریس به الیاف منتقل می شود. بنابراین مادامی كه ماتریس بتن ترك نخورده است،تنش كششی بین الیاف و ماتریس تقسیم می شود. پس از ایجاد ترك، همه تنش به الیاف انتقال می یابد.

مهمترین متغیرهایی كه بر خواص بتن با الیاف فولادی اثر می گذارند عبارتند از:خواص ماتریس بتن ، بازدهی الیاف ومقدار الیاف .بازدهی الیاف بوسیله مقاومت الیاف در برابر بیرون كشیده شدن از مخلوط كنترل می شود این مقاومت به چسبندگی بین الیاف و ماتریس بستگی دارد .برای الیاف با مقطع ثابت این مقاومت با افزایش طول ،افزایش می یابد .بنابراین هر قدر طول بیشتر باشد اثر آنها در بهبود خواص ماتریس بیشتر خواهد بود چون مقاومت در برابر بیرون كشیده شدن متناسب با سطح مقطع دو جسم می باشد .

معمولا الیاف با سطح مقطع گرد و قطر كوچك بیشتر از الیاف با سطح مقطع گرد و قطر بزرگتر بازدهی دارند. این امر به این خاطر است كه الیاف دسته اول سطح بیشتری در واحد حجم دارا می باشند بنابراین هر چه سطح تماس الیاف بیشتر باشد (و یا به عبارت دیگر قطر آنها كوچكتر باشد) بازده چسبندگی آنها بیشتر خواهد بود بنابراین روشن می شود كه نسبت طول به قطر الیاف باید به اندازه ای بزرگ باشد كه در هنگام شكست ماتریس ، الیاف به حداكثر مقاومت كشش خود نزدیك باشند، با این وجود در عمل این كار معمولا ممكن نیست .

بسیاری از محققین نشان داده اند  در صورتیكه از روشهای عادی اختلاط استفاده شود الیاف با نسبت طول به قطر بیشتر از100 باعث كم شدن كارآیی بتن به مقدار قابل ملاحظه ای می شوند و یا بطور نا همگون در بتن توزیع می گردند.

بتن پیش کشیدن

بتن پیش کشیدن

تعداد زیادی از قطعات بتن پیش فشرده ، از جمله دال ها ی کف با روش پیش کشیدن تولید می شوند. کابل ها را به صورت آزاد در داخل قالب قرار می دهند و با دستگاه مخصوص کشش لازم را وارد می کنند. بتن ریزی را انجام می دهند و به کمک لرزاندن ، هوای آن را تخلیه می کنند و شرایط لازم برای انجام خود گیری سریع تر را فراهم می کنند.طول اضافی کابل ها را که در دو انتها به کمک قطعات مخصوص صابت شده اند می برند و بتن را تحت فشار رها می کنند . مانند بتن مسلح پیش ساخته مقطع و محل قرار گیری کابل ها بر اساس بارها ی محاسبه شده مشخص و رعایت می شود .

بتن پیش فشرده

بتن پیش فشرده

مقاومت بتن در برابر فشار بالا است ولی در مقابل کشش ضعیف است. ایجاد پیش فشردگی در بتن با کابل های فولادی باعث می شود بتن همواره در تنش فشاری باقی بماند و در نتیجه میزان بار بری آن افزایش خواهد یافت. چون کابل ها در حالت فشرده قرار دارند و هر نیرویی را به نیروی فشاری تبدیل می کند و هیچ ضعفی در مقطع بتنی ایجاد نمی کند و بتن فقط تحت بارهای بسیار زیاد به کشش می افتد و ترک می خورد.

برای پیش فشرده کردن بتن دو سیستم متفاوت وجود دارد . در پیش کشیدن ، کابل ها قبل از خود گیری بتن کشیده می شود و در پس کشیدن کابل ها پس از سخت شدن بتن کشیده می شوند.

خوردگی فولاد در بتن مسلح

خوردگی فولاد در بتن مسلح

فولاد در صورتی که بتن اطراف آن مرغوب باشد به خوبی متراکم شده و خود گیری آن کامل باشد ، خودگی ندارد محیط قوی قلیایی داخل بتن ( بر اثر سیمان هیدراته ) فولاد را حفظ می کند . اما ، اگر به دلیلی فضای خالی ایجاد شود یا پوشش کافی نباشد فولاد خراب می شود. ازدیاد حجمی که در اثر زنگ زدگی ایجاد می شود سطح فولاد را پوسته پوسته می کند و در نتیجه فولاد عریان می شود و زنگ زدگی پیشرفت می کند و در نهایت زنگ در به سطح بتن رسوب می کند. در بتن مسلح نباید از زود گیرهای کلرید کلسیم استفاده کرد.چون پس مانده آن باعث خوردگی سریع فولاد می شود.برای محافظت بیشتر در برابر خوردگی می توان از فولاد ضد زنگ یا فولاد گالوانیزه ، با پوشش اپوکسی استفاده کرد.

سطح بتن بر اثر عمل کربناسیون حالت قلیایی خود را از دست می دهد و این باعث عدم محافظت از فولاد می شود . عمق کربناسیون به نفوذ پذیری بتن ، مقدار رطوبت و ترک خوردگی در سطح آن بستگی دارد. به همین دلیل میزان اسمی پوشش محافظتی فولاد داخل بتن بر اساس میزان پیش بینی شده شرایط محیطی و درجه بندی مقاومت بتن محاسبه می شود.

میزان محافظت شده محاسبه شده برای همه نو مسلح کننده از جمله میلگرد ، مفتول و الیاف مسلح کننده ثابت اعتبار دارد . گاهی می توان میزان کربناسیون را با استفاده از پوشش های محافظتی کاهش داد.
در حالی که در مورد ضخامت بتن پوششی  اطراف اجزای کششی شک داریم می توان با یک دستگاه پوشش سنج ضخامت بتن را اندازه گرفت. اگر فولاد در بتن در حال پوسیدگی باشد می توان از محافظت کاتدیک به

 وسیله یک جریان پیوسته که به فولاد وارد می شود برای جلو گیری از پوسیدگی بعدی استفاده کرد، این کار بتن کربناته را دوباره قلیایی می کند.

پیوند بین بتن و فولاد

پیوند بین بتن و فولاد

برای اینکه بتن مسلح بتواند به عنوان یک ماده مرکب عمل کند باید پیوند بین بتن و فولاد محکم باشد ، به این ترتیب همه نیروهای کششی به فولاد منتقل می شوند.

شکل و وضعیت سطح فولاد و کیفیت بتن همگی بر قدرت پیوند تاثیر می گذارند.

برای اینکه کارآتر ین پیوند ممکن به دست بیاید ، باید سطح فولاد پوسته به صورت زنگ نداشته و چرب نباشد ، ولی لایه نازک رنگی را که معمولا در نگه داری در کارگاه ایجاد می شود نباید برداشت. استفاده از انتهای قلاب شده در میلگرد معمولی خط بیرون آمدن میلگردها از بتن را تحت بار کاهش می دهد، ولی بهترین چسبندگی در میلگردها ی آجدار ، که در تمام طول خود با بتن با بتن درگیر می شوند ، به و جود می آید.گاهی تقویت بتن با استفاده از قفس های پیش ساخته ( که می توان آنها را به جای بست ها و با مفتول های آهنی با جوش کاری به هم متصل کرد) انجام می شود . البته باید دانست که جوش کاری خیلی به ندرت در کارگاه بر روی خاموت ها انجام می گیرد.

این اتصالات را می توان به راحتی با مفتول فولادی که با پیچاندن سفت می شود ، محکم کرد. از فاصله نگه دارها برای تامین فاصله مناسب بین تقویت کننده ها و سطح قالب بندی استفاده می شود.

بتن مرغوب چگال بهترین پیوند با فولاد را ایجاد می کند، باید بتن اطراف میلگردها را به خوبی متراکم کرد. بنا بر این اندازه دانه بندی سنگی در بتن نباید بیش از حد اقل فاصله قطعات فلز باشد.

بتن پیش ساخته

بتن پیش ساخته

قطعات بتن پیش ساخته به صورت عمودی یا افقی هستند.البته نوع دوم فراوان است.به هر حال در قطعه نما دار و یا بدون نما رعایت مشخصات وکنترل کیفیت از اهمیت زیادی برخوردار است.قالب ها معمولا از تخته چند لا یا فولاد ساخته می شوند. هرچند قالب های فولادی با دوام ترند و برای استفاده مداوم منااسب می باشند، در کارهایی که فرم های پیچیده دارند از قالب های چوبی استفاده می شود. زیرا آنها را راحت تر می توان به شکل مورد نظر درآورد. قالب ها طوری طراحی می شوند که بتن به آنها نچسبد و اندازه های آنها دقیق باشد تا از کیفیت کاراطمینان حاصل شود.

از آنجایی که برای ساخت قالب ها قیمت بالایی پرداخت می شود ، در کارها ی اقتصادی باید تعداد طرح های مختلف را کاهش داد. این مضوع می تواند اثر محسوسی در زیبایی ساختمان بگذارد .اتصالات و نگاهدارنده ها باید در داخل بتن کارگزاشته شوند و معمولا به قطعات کششی داخل بتن وصل می شند.

بتن پس کشیدن

بتن پس کشیدن

در روش پس کشیدن ، کابل ها را در قالب کار، داخل غلاف هایی قرار می دهند ، بتن ریزی را انجام می دهند و وقتی به اندازه کافی خود را گرفت دو سر کابل ها را به طرف بیرون می کشند . این کار به وسیله گوه های مخصوصی که به دو سر سیم ها بسته می شوند و پس از قطع شدن کشش محکم می شوند انجام می گیرد.

معمولا بتن را به ویژه در نزدیکی گوه ها ، مسلح می کنند . در یک روش پس از کشیدن فضاهای خالی داخل غلاف را با دوغاب مخصوص پر می کنند . این کار فشار بر قلاب ها را کاهش می دهد. البته در روش دیگر سیم ها رها می مانند تا در داخل بتن آزادانه حرکت کنند. غلاف ها از تسمه های گالوانیزه یا پلی تن سنگین ساخته می شوند. ضریب پس کشیدن بر پیش کشیدن این است که می توان آنها را خمیده کرد تا در مسیر تنش قرار گیرند. به این ترتیب می توا ن بتن را به شکلی ریخت که کمترین حجم ممکن را داشته باشد . در تخریب یا دوباره سازی بهتر است بتن های پیش فشرده نچسبیده را از فشار خلاص کرد. البته تجربه نشان داده است که در صورت آزاد نکردن قطعه از فشار خطری ایجاد نمی شود. در دوباره سازی و تعییرات، سیم های تحت فشار گاهی باید دوباره قلاب دار و فشرده شوند. البته استفاده از بتن پیش فشرده جلوی جا به جایی سازه ای را نمی گیرد.

بتن کارگاهی

بتن کارگاهی

کیفیت بتن کارگاهی بستگی زیادی به قالب کار دارد، چون هر نقصی در بتن منعکس می شود. قاب باید به اندازه کافی محکم باشد تا فشار بتن تازه را تحمل کند و اتصالات باید بتوانند جلوی نشت بتن یا دوغاب آن را بگیرند. که در غیر این صورت سطح بتن به هم می ریزد . برای ساخت قالب می توان از انواع چوب ، فلزات و پلاستیک ها بسته به سطح نهایی دلخواه استفاده کرد

افزودن فيبر به بتن

افزودن فيبر به بتن


 

سالهاست که تحقيقات گسترده ای برای ارزيابی و بررسی مزيت های کيفی استفاده از فيبر در بتن در کارهای عمومی مهندسی عمران در جريان است. فيبرهای افزودنی مختلفی در ترکيب با بتن برای کاربردهای خاص طراحی و برای بهبود خواص مکانيکی آن آزمايشهای زيادی صورت گرفته است. محققان در مواد جديد به دنبال افزايش شکل پذيری، دستيابی به مقاومت فشاری بيشتر و يا افزايش مقادير سختی ناهمسانگرد (anisotropic) هستند. مواردی که بیشتر در طراحی سازه ها در مناطق لرزه خیز کاربرد دارد. تحقیقات صورت گرفته بطورکلی به ارزیابی اثرات فیبرهای ساخته شده از فولاد، شیشه، کربن و یا کنف  روی رفتار بتن می پردازد.انتخاب مواد مختلف برای این صورت گرفته است تا خواص بتن الزامات ویژه طراحی را تامین کند. تعدادی از این الزامات شامل مقاومت قلیایی، مقاومت در برابر خوردگی، عدم حساسیت مغناطیسی و افزایش شکل پذیری اتصال تیر به ستون برای اتلاف انرژی در هنگام فعالیت گسلها و وقوع زلزله می باشد.

الیاف ریز تهیه شده از فولاد ،شیشه ،کربن و یا کنف چنان با بتن مخلوط می شوند که تشکیل ماتریسی از بتن میگردند که در آن الیاف سنگ دانه ها را در بتن در برگرفته اند. افزودن فیبرها به بتن آنرا همگن تر و ایزوترپیک تر می گرداند و سبب بهبود مقاومت کششی و به ویژه شکل پذیری آن می شود. اگرچه خواص فیبرهای ساخته شده از شیشه ،کربن و ... در برخی موارد متفاوت از خواصی است که ما از فولاد سراغ داریم اما آنچه کاملا مشهود است اینست که تنها فولاد است که می تواند ناحیه ای از رفتار پلاستیک را فراهم کند. بیشترین كاربرد الیاف فولادی در احداث تونلها و كفهایی است كه تحت بارهای سنگین صنعتی قرار دارند. افزودن فیبرهای فولادی سبب افزایش مقاومت كششی در بتنهای معمولی و یا بتنهای با مقاومت بالا می گردد.همچنین اثرات مثبتی بر روی كنترل تشكیل تركها و تغییرشكلهای درازمدت عضو دارد.در مورد فیبرهای شیشه می توان گفت كه ظرفیت بسیار خوبی دربرابر حملات شیمیایی در محیطهای قلیایی را دارد بنابراین الیاف شیشه بویژه در مواردی كه مقاومت بالا در برابر خاصیت قلیای مورد نیاز است قابل استفاده می باشد.از دیگر مزیت های آن مقاومت در برابر خراش است.فیبرهای كنف كه از قدیمی ترین الیاف محسوب می شوند و در صنایع دیگری مانند نساجی نیز كاربرد دارند به دلایل زیادی استفاده از آنها در سازه های بتنی با شكست همراه بوده است. زیرا از جهت خواص مكانیكی نسبت به سایر مواد فاصله زیادی دارد. مقاومت كششی و مدول یانگ در آن بستگی به فصل برداشت محصول و فرایند برداشت محصول دارد.همچنین بدلیل وجود اسید سیلیسیك در آن مقاومت خوبی در برابر مواد قلیایی ندارد و سبب انبساط قلیایی و ایجاد ترك در بتن می گردد.فیبرهای كربن معمولا از مواد زائد حاصل از تولیدات كربنی مختلف بدست می آید و همچنین بصورت فتیله تولید و فروخته می شود.باید گفت كه كربن مقاومت در برابر خوردگی و جریان مغاطیسی بهتری نسبت به فولاد از خود نشان می دهد. بطوریكه علاوه بر فیبرهای فولادی فیبرهای كربنی آینده بهتری نسبت به سایر فیبرها در كاربردهای مهندسی عمران دارند. اما باید دقت داشت كه تولید بتن مسلح با فیبر با ارزش تر از اینست كه ما فقط فیبر به بتن معمولی اضافه كنیم. زیرا در این صورت شاهد بهبود ساختار دانه ای برای تامین كارایی و خواص مكانیكی مخلوط خواهیم بود.

استفاده از خرده شیشه در بتن

استفاده از خرده شیشه در بتن

 

مقدار زیادی از شیشه های مصرف شده دوباره بازیافت می شوند و قسمتی نیز برای مصارف گوناگون از جمله سنگدانه های بتن به کار می روند .مقدار زیادی از این مواد شرط لازم برای بازیافت را فراهم نمی کنند و این مواد برای دفن فرستاده می شوند. فضای مورد استفاده برای دفن قابل توجه است و این فضا می تواند برای مصارف دیگری به کار برده شود. شیشه یک قلیایی غیر پایدار است که در محیط بتن میتواند باعث بوجود آمدن مشکلات ناشی از واکنش قلیایی – سیلیسی (ASR) شود. این ویژگی به عنوان یک مزیت در خرد کردن پودر شیشه و استفاده از آن به عنوان یک ماده پوزولانی در بتن استفاده شده است. رفتار دانه های بزرگ شیشه را در واکنش قلیایی در آزمایشگاه نمی توان با رفتار واقعی پودر شیشه در طبیعت برابر دانست. تجربه مزایای واکنش پوزولانی شیشه را در بتن مشخص کرده است. می توان در بعضی از مخلوطهای بتن تا %30 وزن سیمان پودر شیشه اضافه کرد و به مقاومت مناسبی دست یافت.

مقدمه
شیشه در انواع مختلفی تولید می شود (بسته بندی ، شیشه صاف ، حباب لامپها ، لامپ تلویزیونها و ...). اما همه این وسایل عمر مشخصی دارند و نیاز به استفاده دوباره و بازیافت آنها به منظور جلوگیری از مشکلات زیست محیطی که ناشی از ذوب آنها و یا دفن ایجاد می شود احساس می شود.

بازیافت شیشه های مصرف شده بصورت تجاری به محلهای مخصوص طراحی شده برای بازیافت یا دفن و یا جمع آوری کربنات و سپس حمل آنها به محلهای دپو می روند. بزرگترین هدف قوانین زیست محیطی تا خد امکان کم کردن ضایعات شیشه و بردن آنها به محلهای دفن و تجزیه شیمیایی آنها به طور اقتصادی است. شیشه یک ماده منحصر به فرد است که می تواند بارها و بارها بدون تغییر در خواصش بازیافت شود. به عبارت دیگر یک بطری می تواند ذوب شده و دوباره به بطری تبدیل شود بدون اینکه تغییر زیادی در خواصش ایجاد شود.

بیشتر شیشه های تولیدی بصورت بطری هستند و مقدار زیادی از شیشه های جمع آوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری و مرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جدا کردن باشند می توان از آنها جهت تولید شیشه با رنگهای مشابه استفاده کرد. ولی وقتی که شیشه با رنگهای متفاوت با هم مخلوط شدند، برای تولید بطری نامناسب می شوند و باید آنها را در مصارف دیگری به کار برد و یا دفن کرد. آقای ریندل (Rindl) به چند مورد از استفاده های غیر بطری شیشه اشاره می کند که شامل : سنگدانه روسازی راه ،پوشش آسفالت ، سنگدانه بتن ، مصارف ساختمانی ( کاشی شیشه ای ، پانلهای دیوار و ...) ، فایبر گلاس ،شیشه های هنری ،کودهای شیمیایی ،محوطه سازی ،سیمان هیدرولیکی و بسیاری دیگر. استفاده از بتن در سنگدانه های بتن در این مقاله مورد بررسی قرار می گیرد. نگرانی بزرگی که در استفاده از شیشه در بتن وجود دارد واکنش شیمیایی مابین ذرات سیلیس اشباع شیشه و قلیاییهای مخلوط بتن است که به واکنش سیلیسی – قلیایی(Alkali Silica Reaction ASR) معروف است. این واکنش می تواند برای پایداری بتن بسیار خطرناک باشد. به همین منظور باید پیشگیری مناسبی در جهت کمتر کردن اثر این واکنش انجام شود. پیشگیری مناسب می تواند با استفاده از یک ماده پوزولانی مناسب مانند :خاکستر هوایی ،سرباره کوره آهن گدازی و یا میکرو سیلیس (Silica Fume SF) با نسبت مناسب در مخلوط بتن انجام گیرد. حساسیت شیشه به مواد قلیایی این حدس را بوجود می آورد که شیشه درشت و فیبر شیشه می تواند اثر واکنش ASR را کم و یا محو کند. اگرچه این تصور نیز وجود دارد که پودر شیشه می تواند خواص پوزولانی (مانند مواد ذکر شده در بالا) از خود نشان دهد و از اثرات و انجام واکنش ASR توسط دانه های شیشه جلوگیری کند.

برای مثال پودر شیشه آهکی سیلیکاتی رد شده از الک 100# در جهت کاهش ASR است. همچنین مرکز زمین پاک واشنگتن بیان می کند که دانه های ریز (پودر) می توانند بتن را بوسیله آزمایش ASR تضعیف کنند. همچنین کارهای انجام شده توسط آقای Samtur بر روی این موضوع بیان می کند که پودر شیشه رد شده از الک 200# می تواند مانند یک ماده پوزولانی و در جهت کاهش اثر واکنش سنگدانه ها (ASR) عمل کند. همچنین آقای Pattengil نیز به همین نتایج دست یافت. ذرات شیشه باعث انبساط زیادی می شوند. اگرچه ذرات کوچکتر از mm 0.25 در آزمایشگاه باعث هیچ گونه انبساطی در بتن نگردیدند.مشخص شد که ذرات شیشه حدود mm 1.2 باعث بیشترین انبساط ملات در بین دانه های با اندازه mm 4.75 تا mm 0.15 می شوند.همچنین این نتیجه حاصل شد که بیشترین انبساط وقتی حاصل می شود که 100% ذرات شیشه بصورت سنگدانه باشند و اگر شیشه های سبز بیش از 1% اکسید کرم داشته باشند اثر مثبتی بر واکنش ASR دارند. mm1.5

پودر شیشه بر کم کردن اثر واکنش ASR در آزمایش تسریع شده ملات مانند اثر خاکستر بادی و میکروسیلیس و سرباره موثر است. این نشان می دهد که پودر شیشه می تواند انبساط ناشی از ASR را در سنگدانه های حساس و شیشه های دانه ای متوقف کند. از مطالب بالا نتیجه گیری می شود که شیشه می تواند به سه صورت در بتن استفاده شود: درشت دانه ریز دانه پودر شیشه درشت دانه و ریز دانه می توانند باعث واکنش ASR در بتن شوند. اما پودر شیشه می تواند اثر ASR آنها را کاهش دهد. در بعد تجاری بسیار به صرفه است که پودر شیشه به جای سیمان مصرف شود تا اینکه شیشه به عنوان سنگدانه در بتن مصرف شود. پودر پودر شیشه یک ماده با ارزش است که از شیشه هایی که برای بازیافت مناسب نیستند به دست می آید. در قسمتهای بعدی اطلاعاتی در مورد استفاده از شیشه در بتن در سه حالت ذکر شده ارائه می گردد. کارهای آزمایشگاهی سه مورد از کاربردهای شیشه در بتن در برنامه تحقیق ARRB مشخص شده است. اینها شامل : شیشه های درشت دانه شیشه های ریزدانه و پودر شیشه است. حدود ذرات برای هر شاخه در زیر ذکر شده است. شیشه درشت دانه mm 12-4.75 CGA شیشه ریز دانه mm4.7-0.15 FGA پودر شیشه کوچکتر از mm0.01 GLP ترکیب شیمیایی تولیدات یک تیپ شیشه مشابه هستند.

شیشه های درشت دانه و ریز دانه جهت جایگزینی حدود اندازه های مشابه سنگدانه های طبیعی به کار می روند. پودر شیشه به عنوان یک ماده پوزولانی مورد مطالعه قرار می گیرد(مانند کاربرد خاکستر هوایی و میکروسیلیس). مواد طبیعی استفاده شده در این کار شامل ماسه طبیعی بتن ویکتوریا و سنگ شکسته طبیعی بازالتی بود. یکسری سنگدانه فعال خاکستری از NSW برای تشخیص اثر پودر شیشه بر توقف انبساط AAR (Alkali Aggregate Reaction) مصرف شد.

3- سنگدانه های درشت و ریز شیشه در بتن تاثیر خصوصیات فیزیکی سنگدانه های شیشه ای مانند اندازه آنها در مخلوط بتن مشخص است. شیشه بنابر طبیعت اشباع از سیلیس و شکل بی ریخت ملکولی آن به حمله شیمیایی مخیط قلیایی که در بتن هیدراته شده ایجاد می شود حساس است. این حمله شیمیایی می تواند تولید تغییر شکلهای وسیعی بر ژل AAR بتن داشته باشد که توسعه پیدا می کند و اگر پیشگیریهای مناسب در فرمولاسیون طرح اختلاط لحاظ نشود باعث ترک خوردن زودرس بتن می شود. طبیعت واکنش شیشه در کاربرد آن در بتن بسیار اهمیت دارد. برای مثال بعضی از سنگدانه های طبیعی می توانند وقتی که به مقدار کمی در بتن استفاده می شوند باعث انبساط بیش از اندازه بتن شوند و بعضی دیگر به صورت 100% در بتن استفاده می شوند. واکنش سنگدانه ها بوسیله آزمایش تسریع شده استوانه ملات (AMBT) مشخص می شود (ASTM C1260). نتایج آزمایش AMBT نشان می دهد که مخلوط با شیشه بیشتر در ملات انبساط بیشتری نیز داشته است. شرط برای این آزمایش این است که انبساط کمتر از 0.1% در عمر 21 روزه نشان دهنده سنگدانه غیر فعال و بیش از 0.1% در عمر 10 روزه نشان دهنده سنگدانه فعال است. انبساط کمتر از 0.1% در 10 روز ولی بیش از 0.1% در 21 روز نشان دهنده سنگدانه با واکنش آهسته است. بر اساس این شرط استفاده از بیش از 30% شیشه در بتن ممکن نیست اثرات زیانباری داشته باشد. (مخصوصا اگر قلیاییهای بتن کمتر از kg3 Na2O در یک متر مکعب باشد). بتنهای با قلیایی بیشترممکن است انبساطهای بیشتری را بوجود بیاورند.  نتیجه نشان می دهد که اندازه های شیشه زیر mm0.3 اختمال کمی برای انبساط خطرناک دارند ولی اندازه های بزرگتر ازممکن است باعث انبساطهای قابل ملاخظه ای شوند. بنابراین اندازه انبساط وابسته به میزان شیشه موجود، اندازه ذرات و میزان قلیاییهای مخلوط است.این نتایج نشان می دهد که شیشه می تواند ژلAAR تولید کند و اگر اندازه ذرات به اندازه کافی کوچک شود می تواند به عنوان یک ماده پوزولانی عمل کند. mm0.6
مشخص شده است که فعالیت سنگدانه ها و انبساط حاصله می تواند با بکار بردن میزان مناسب از مواد با خاصیت سیمانی شدن مانند میکرو سیلیس و خاکستر هوایی کنترل شود. همچنین پودر شیشه ریز می تواند بصورت مشابه عمل کند. با توجه به کاربرد سنگدانه های ریز و درشت که مورد بررسی قرار گرفتند مخلوطهای آزمایشی با توجه به میزان سنگدانه های ریز و درشت مناسب در مخلوط بتن گسترش یافته اند. آزمایشات به سمت تولید بتن با حدود Mpa32 تحمل پیش رفتند. مخلوط محتوی Kg/m3255 سیمان و Kg/m3 85 خاکستر هوایی بود. میزان شن و ماسه به ترتیب Kg/m3 1080 و Kg/m3780 مناسب به نظر می رسید.
بعد از تعدادی سعی و خطا فرمولی رضایتبخش به سمت ویژگیهای مناسب بتن تازه جهت این مخلوط پیدا شد که به صورت زیر است: این موضوع از مقاومت بتنها آشکار است که این مخلوطها به راحتی به مقاومت Mpa32 رسیده و ختی از آن عبور می کنند( در حالی که از مقدار زیادی شیشه بازیافتی استفاده شده است). برای مصارف غیر سازه ای که مقاومت کمتری مورد نیاز است از همین مخلوط بدون کاهش دهنده (روان کننده) آب می توان استفاده کرد.  با توجه به وجود 25% خاکستر هوایی در مخلوط ،بتن از واکنش ASR نیز محفوظ است. جمع شدگی ناشی از خشک شدن این مخلوطها خوب و زیر مرز 0.075% که توسط استاندارد استرالیا معین شده ، بود.  با توجه به مطالب بالا به این نتیجه می رسیم که مقدرا حتی بیش از 50% از هر کدام از درشت دانه یا ریز دانه می توانند در مخلوط بتن سازه ای یا غیرسازه ای مصرف شوند. اگرچه دیگر پارامترهای مهندسی این مخلوط ها نیاز به تحقیق و بررسی بیشتری دارند.

4- اثرات پودر شیشه بر مقاومت ملات تقسیم اندازه ذرات پودر شیشه (GLP) بصورت زیر است: اندازه ذرات کوچکتر از 5 میکرون 5-10 میکرون 10-15 میکرون بزرگتر از 15 میکرون درصد 39 49 4.4 7.6 سطح مخصوص پودر شیشه m2/Kg 800بود که تقریبا دو برابر بیشتر سیمانهای موجود است. در مورد جایگزینی سیمان ممکن است کاهش مقاومت 28 روزه پیش بیاید که یک اثر کوتاه مدت است و خواص پوزولانی را آشکار می کند. همچنین خاکستر هوایی نیز وقتی که با میزان مشابه سیمان جایگزین می شود اثری مشابه تولید می کند. مقاومتهای طولانی تر با میکرو سیلیس مورد مطالعه قرار گرفتند. این سری از نمونه ها تشکیل شده بود از : نمونه کنترلی که ریزدانه فعال خاکستری داشت، نمونه با 10% میکروسیلیس ، با 20% پودر شیشه ، با 30% پودر شیشه که با سیمان مساوی جایگزین شده بودندو در یک نمونه نیز 30% پودر شیشه جایگزین سنگدانه ها شده بود. سه نتیجه نشان می دهد که جایگزینی 10% بخار سیلیس مقاومت بیشتری از جایگزینی GLP دارد. ولی همچنین نشان می دهد نمونه ملاتی که حاوی GLP باشد برای مدت طولانی تری رشد مقاومت خواهد داشت (به خاطر واکنش پوزولانی). باید توجه شود که وقتی 30% ماسه با پودر شیشه جایگزین می شود مقاومت 90 روزه برابر مقاومت مخلوط حاوی میکروسیلیس است. برای بررسی اثر مثبت جایگزینی پودر شیشه به جای سنگدانه ها دو آزمایش اضافی بر روی مکعبهای ملات انجام شد (270 روز عمل آوری شده).
در یک سری از نمونه ها 20% از سیمان با پودر شیشه جایگزین شد و در سری بعدی به علاوه 20% سیمان 10% از سنگدانه ها نیز جایگزین شدند. این جایگزینی به صرفه است (احتمالا به خاطر بهبود دانه بندی و واکنش پوزولانی). همچنین باید توجه شود که مقاومت مخلوط با 20% شیشه به جای سیمان و 10% به جای سنگدانه ها به مقاومت مخلوط محتوی میکرو سیلیس رسیده و از آن تجاوز می کند. ظاهرا اثرات سود آور مقایسه شده میکرو سیلیس بر مقاومت نسبت به پودر شیشه بصورتی زیاد در این آزمایش افزایش یافته اند. زیرا مخلوط با میکروسیلیس حاوی 90% سیمان است ولی مخلوطهای با پودر شیشه حاوی 80 و 70% سیمان هستند. برای مقایسه مبتنی بر میزان سیمان مساوی ، آزمایش مقاومت ملات بر روی دو سری از نمونه ها که حاوی شیشه دانه بندی شده به جای ریزدانه (80% شیشه و 20% ماسه طبیعی) که 30% از سیمان نیز با مواد دیگر جایگزین شده بود انجام شد. در یک نمونه 30% از سیمان با پودر شیشه جایگزین شد و در دیگری با مخلوطی از 10% میکروسیلیس و 20% سنگ بازالتی غیر پوزولانی نرم و ساییده شده. در این روش میزان سیمان هردو نمونه مساوی است. نتایج مقاومت برای هر دونمونه تقریبا یکسان است. باید به این نکته توجه شود که مقاومتهای نشان داده شده به علت تفاوت کلی در سنگدانه های ملات اساسا قابل مقایسه نیستند.

5- اثر پودر شیشه بر انبساط ملات دانه های در حد ماسه شیشه می توانند باعث واکنش قلیایی سنگدانه ها بصورت خطرناکی باشند ( مخصوصا در میزان بالای شیشه در آزمایش تسریع شده ملات). بنابر این 6 سری نمونه های ملات محتوی 80% دانه های شیشه فعال ساخته شد. نمونه کنترلی که حاوی سنگدانه و سیمان معمولی بود، و در 5 نمونه دیگر سیمان با 5% و 10% میکروسیلیس و 10 و20 و 30% پودر شیشه جایگزین شده بودند.
این ترکیبات (هردو حالت GLPو میکروسیلیس) در کاهش انبساط واکنش AAR موثر هستند به شرط اینکه به اندازه مناسب مصرف شوند (10%میکروسیلیس و <20%GLP). این نتایج نشان می دهد که نقش 20 و 30% GLP در توقف واکنش AAR بیشتر از 10% میکروسیلیس است. با وجود مقدار زیاد کربنات سدیم در شیشه (حدود13%) این نکته مهم است که خود دانه های پودر شیشه باعث انبساط طولانی مدت ملات نشوند و یا باعث تحریک سنگدانه های فعال مخلوط نباشند. آزمایش طولانی مدت استوانه ملات در 38 درجه سانتیگراد و 100% اشباع با سنگدانه های فعال و غیر فعال و با میزان جایگزینی مساوی سیمان (مانند آنچه در بالا گفته شد) انجام شد. انبساط کمتر از 0.1% در یک سال نشان دهنده ترکیب بی ضرر است. وقتی سنگدانه ها غیر فعالند خود GLP باعث انبساط مخلوط نمی شود. اما وقتی سنگدانه ها فعال هستند وجود 30%GLP باعث تحریک واکنش سنگدانه های خیلی حساس هم نمی شود. همچنین وقتی که سیمان جایگزین نشود و 30% GLP به جای سنگدانه استفاده شود باعث انبساط خطرناک استوانه ملات نمی شود. اطلاعات نشان می دهد که GLP می تواند بدون ترس از اثرات زیانبار آن استفاده شود.

6 -پودر شیشه در بتن اثر پودر شیشه بر انبساط بتن مشخص شد. یکسری سنگدانه خیلی فعال در منشور بتن (بر اساس ASTM C1293) استفاده شد.انبساط خطرناک در این آزمایش 0.03% تا 0.04% در یک سال است. 40% GLP که پتانسیل رها سازی قلیایی بیشتری از 30%GLP دارد می تواند تا 80% از انبساط ناشی از سنگدانه های فعال جلوگیری کند. برای سنگدانه های کمتر فعال نیز انبساط متوقف می شود. این امر نشان دهنده اثر مثبت GLP در بهبود دوام بتن است. وقتی که نسبتهای متفاوتی از GLP با سنگدانه های غیر فعال در بتن با قلیایی بالاتر (Na2O/m3 5.8) استفاده می شوند خود شیشه نیز باعث انبساط خطرناکی در مخلوط نمی شود. نتیجه آخر اینکه GLP اثر زیان آوری بر مخلوط بتن ندارد.
اثر پودر شیشه بر خزش و مقاومت بتن به تعداد نمونه ها ولی با قلیایی کمتر برای تعیین خزش خشک شدن بتن با مقادیر مختلف GLP و میکروسیلیس استفاده شد. اطلاعات طولانی مدت نشان می دهد که خزش خشک شدگی مخلوطهای متفاوت زیاد نیست و به راختی استانداردهای AS3600 را برآورده می کند.(کمتر از 0.075% در 56 روز).

به نظر می رسد که اگرچه مخلوط های محتوی GLP مقاومت اولیه کمتری دارند (با توجه به سیمان کمتر) ولی به رشد مقاومت خود در محیط نمناک ادامه می دهند و به مقاومت نمونه کنترلی نزدیک می شوند. همچنین وقتی که GLP با ماسه جایگزین می شود مقاومت بصورت چشمگیری از نمونه کنترلی بیشتر است. رشد ممتد مقاومت به وضوح اثر مثبت واکنش پوزولانی را در بتن نمایان می سازد.

7-بافت میکروسکوپی ملات محتوی پودر شیشه نمونه های ملات محتوی GLP که 270 روز در محیط نمناک بودند بوسیله میکروسکوپ الکترونی اسکن شدند. این نمونه های ملات نشان دهنده خصوصیات بتنهای با عمر مشابه نیز بودند. در هر دو مورد شکست سطح نمونه ملات حاکی از بافت میکروسکوپی متراکم بود.

8- نتیجه اطلاعات موجود در این مقاله نشان می دهد که پتانسیل زیادی در بازیافت شیشه و مصرف آن در حالتهای پودر ،ریزدانه و درشت دانه وجود دارد. این نتیجه نهایی می تواند حاصل شود که می توان با جایگزینی شیشه با مواد گرانقیمت ری مانند میکروسیلیس یا خاکسترهوایی و یا حتی سیمان در هزینه ها صرفه جویی کرد.

GLP
مصرف پودر شیشه در بتن می تواند از انبساط ASR در حضور سنگدانه های فعال جلوگیری کند. همچنین بهبود مقاومت پودر شیشه در ملات و بتن چشمگیر است. آزمایشات بافت میکروسکوپی نشان دهنده این است که پودر شیشه می تواند یک مخلوط متراکم تر تولید کند و خصوصیات دوام بتن را بهبود ببخشد. این نتیجه که 30% پودر شیشه می تواند به جای سیمان یا سنگدانه در بتن (بدون نگرانی از اثرات زیانبار طولانی مدت) جایگزین شود حاصل شد. بیشتر از 50% از هر دو (پودر شیشه یا سنگدانه شیشه ای) می تواند در بتن با رده مقاومت Mpa 32 باعث بهبود قابل قبول مقاومت بتن شود.

سرطان بتن چیست

سرطان بتن چیست

 علیرغم اینکه سیمان یک محصول کارخانه ای است وبه خصوص ترکیبات شیمیائی آن در هر لحظه از طرف کارخانه تولید کننده کنترل میشود متاسفانه در بعضی مواردبنا به دلایل مختلف، کیفیت سیمانهای تولیدی در بعضی از کارخانه ها به شدت نزول کرده است. ازنظر اصول فنی، می بایست سیمانی مصرف شود که به لحاظ درصد کل قلیائی ویا همان هم ارزی قلیائی درصد محدودی از وزن سیمان راداشته باشد ولاغیرممکن است بعدازچندماه تاچند سال شاهد آثارتخریبی سهم گینی درسازه های بتنی که درمعرض آب هستند باشیم. برای توضیح مطلب هم ارزی قلیائی را برای یک نمونه از سیمان آزمایش شده راجهت برسی انتخاب نموده ایم .

درصد کل قلیائی وبعبارتی هم ارزقلیائی معادل عددی اکسیدهای پتاسیم (K2O) واکسیدسدیم (Na2O)= با رابطه زیر میباشد.

= Na2O+0.658 K2O هم ارزی قلیائی

آزمایشهای متعدد ومنابع فنی وهمچنین آئین نامه بتن ایران (بند 3-4-5 )، حداکثر مقدار هم ارزی قلیائی رابه 0.6 درصد محدود کرده است. که این مقدار درنتایج آزمایش پیوست 0.654 درصد گزارش شده است.

وجود درصد بالائی ازهم ارزی قلیائی ، موجب خرابی بتن دردرازمدت خواهد شداین عمل که واکنشهای قلیائی سنگدانه ها (ویا سرطان بتن ) نامیده می شود دارای مکانیزمی است که بطور خلاصه به شرح زیر می باشد.

 

اکسیدهای پتاسیم وناتریم (سدیم) که درآخرین سطح انرژی خود (مدارالکترونیک) فقط یک الکترون دارند که براحتی می تواند آن رااز دست بدهند درنتیجه میل ترکیبی وشرکت درواکنشهادرآنهازیادمیباشد.این موضوع باعث ایجاد محیط قلیائی دربتن می شود،محلول قلیائی موجوددربافت بتن وکانیهای سیلیسی درشن وماسه تشکیل یک ژل قلیائی می دهد که همان سیلیکات کلسیم می باشد،این ژل به خصوص درسازه هائیکه درمجاورت آب باشند به مرور زمان خاصیت انبساطی پیدا می کند وسازه راازدرون بایک تنش بزرگتراز مقاومت کششی بتن مواجه می سازد که نهایتا موجب ترکهای زیادی درسطح بتن ودرعمق بتن میگردد. باگذشت زمان آب جذب شده از محیط اطراف،باعث افزایش حجم بیشتر شده وانبساط فشارافزا،باعث تخریب کلی سازه می گردد.این پدیده عموما از5 الی 10 سال بعد از بتن ریزی بروزپیدا می کند.

معمولا واقعی ترین اطلاعات در زمینه پتانسیل فعالیت سیلیسی سنگدانه های بتن ،ازعملکرد واقعی آنها ،درسازه های سالم مشابه ،ازاهمیت ارزیابی سنگدانه ها می کاهد ولی با علم به این مطلب  که معمولا مصالح رودخانه ای دارای سیلیس می باشند وبامقایسه کیفیت مطلوب سیمان و روشهای اصولی ساخت واجرای بتن در آن زمان،باوضعیت زمان حاضر، به اهمیت موضوع پی خواهیم برد.

ودرنهایت: مقایسه ویژگیهای شیمیایی وفیزیکی سیمان مطابق استاندارد ایران با نتایج نمونه مورد مصرف درکارگاهها سودمند خواهد بود.

برتری های بلوک پلی استایرن سنگون

منبع : وبلاگ مهندس فرید - دانشجویان دارالفنون قزوین

برتری های بلوک پلی استایرن سنگون


• استفاده از بلوک پلی استایرن سنگون، باعث کاهش وزن کلی ساختمان تا حدود 15% می گردد که در طراحی سازه نقش تعیین کننده داشته در نهایت موجب کاهش میزان آهن مصرفی تا حدود 7 کیلو گرم در متر مربع زیر بنا خواهد شد.
• کاهش وزن کلی ساختمان ، صرفه جویی در مصالح سازه ای ، حفظ منافع ملی و ارزان شدن ساختمان را به همراه دارد.
• سازه هایی که با بلوک پلی استایرن سنگون ساخته شوند به دلیل سبکی وزن در مقابل زلزله مقاومت بیشتری دارند.
• به حداقل رسیدن خطر آسیب پذیری افراد در هنگام سقوط احتمالی بلوک ها از دیگر مزایای بلوک پلی استایرن می باشد.
• عایق صوت و حرارتی بسیار خوبی است ( صرفه جویی در مصرف انرژی)
• جابجایی آسان و سرعت در اجرا و قابلیت اندازه کردن و برش به اندازه دلخواه از دیگر مزایای بلوک پلی استایرن سنگون است.
• مطابق استاندارد و ضوابط مقررات ملی ساختمان ایران تولید می گردد.

اساس اين سيستم همانطور که قبلاً اشاره شد استفاده از سازه بتن¬آرمه باربر در سقف و ديوار ساختمان و پارتيشن¬هاي پلي استايرن مسلح سبک، در تيغه¬هاي غير باربر است. ديوارها در داخل قالبي از پانل¬هاي مسلح پلي استايرن بتن¬ريزي مي شوند و قالب سقف¬ها نيز از پلي استايرن مسلح به صورت مجوف و شبيه به سقف¬هاي اسپايرول بتني ساخته مي-شوند. به عبارت ديگر ساختمان در دو لايه از پلي استايرن پيچيده مي¬شود که از لحاظ عايق بندي بيشترين بازدهي را دارد. کل قطعات ديواري و سقفي و پارتيشن پلي استايرن مسلح در کارخانه آماده و جهت نصب به محل اجرا حمل مي¬شود.
عناصر سيستم شامل موارد زير است:
پانل سقفی، دیوار باربر، دیوار پارتیشن
مزاياي عمده سيستم سوپرپانل عبارتند از:
- سرعت نصب
- صرفه جويي در مصرف انرژي
- افزايش دوام و محافظت سازه ساختمان در برابر محيط
- استحکام و قدرت باربري
- قابليت عبور لوله هاي تاسيساتي
- کاهش مصرف مصالح نازک کاري
- قابليت نصب تخته گچي کناف
- کاهش وزن ساختمان
- کاهش پرت مصالح
- عدم محدوديت در طراحي معماري
- عايق صدا
- صرفه جويي در هزينه حمل
- برگشت سريعتر سرمايه ساخت

مطالب فوق بخشی از سخنرانی مهندس نایینی بود که در ادامه به سوالات زیر نیز پاسخ گفتند.
- در اين سيستم مي توان طبقات مختلف و پلان هاي معماري متنوع داشت؟
" اين سيستم کارايي خيلي زيادي در پلان هاي مختلف دارد و مي¬توان آن را به صورت تلفيقي با ساير سيستم¬هاي سازه¬اي استفاده کرد. بهترين طرح براي سيستم سوپر پانل، اين است که در طبقات تکرار طراحي داشته باشيم."
2- ضريب رفتار در اين سيستم به چه صورت است؟
" در مورد ضريب رفتار چيزي که در اين سيستم به آن رجوع مي کنيم آيين نامه 2800 ، بند اول، سيستم هاي ديوار بتن آرمه است. در استفاده از اين سيستم در سازه باربر به صورت ديوار برشي و المان باربر قائم طبق آيين نامه تا 50 متر و 15 طبقه محدود هستيم. در مورد سقف هم در رده بندي ديگري از اين آيين نامه مراجعه مي کنيم. در 15 طبقه سيستم شامل ضرايب سختي 6و7و8 مي شود."
3- آيا سيستم از نظر نظام مهندسي و شهرداري داراي مجوز است؟
" در حال حاضر اين سيستم براي صدور تأييديه توسط سازمان تحقيقات و مسکن در حال بررسي است. مجوزهاي کنوني مجوزهاي موردي است مثلاً مجوزي که قرار است سازمان ملي زمين و مسکن براي يک مجموعه بلوک از زمين هاي واگذاري طرح استيجاري دولت صادر کند. "
4- هزينه هر مترمربع ساخت چه مقدار است؟
" هزينه هر مترمربع بستگي به نحوه طراحي دارد. در صورتي که طراحي مطابق با فرم سازه-اي ساختمان باشد، هزينه سفت کاري در حد ساختمان هاي سنتي در مي آيد. در نازک کاري با توجه به ويژگي هاي خاص اين سيستم هزينه هاي عمومي کاهش مي يابد. (عدم وجود پرت مصالح ساختماني و عايق بودن از نظر حرارتي) هزينه کار تمام شده چيزي حدود 300 تا 350 هزار تومان در مترمربع است که
بستگي به طرح معماري دارد. "
5- اجرا را خود سوپر پانل انجام مي دهد يا خريدار؟
" هر قالب بندي با يک بار مشاهده سيستم مي تواند آن را اجرا کند يا آموزش دو سه ساعته ببيند و براي او گواهينامه صادر گردد. خود سوپر پانل هم با توجه به سابقه ساختمان سازي حاضر است يا به صورت نمونه و يا کل پروژه در صورت امکان اين کار را انجام دهد. "
6- نمونه اجرا شده در تهران وجود دارد يا خير؟
ساختمان هايي در قزوين و قشم و گنبد در حال اجرا است که با توجه به جديد بودن سيستم، بيشتر جنبه آزمايشي و نمايشي دارد.
7- حداکثر طول قطعات سقف بدون ستون در چه اندازه اي قابل اجرا است؟
طول قطعات سقف معادل طول قطعات بتني متعارف بتني است. با توجه به کم بودن بار ساختمان به خاطر پارتيشن ها و مصالح سبک و قابل تنظيم بودن ارتفاع تيرچه ها دهانه ها خيلي محدوديت ندارند و 7،8،9 متر قابل اجرا هستند.
8- حفظ ارزش هاي پايدار معماري يا به عبارتي توجيه معماري سيستم به چه صورت است؟
از نظر طراحي اين سيستم داراي هيچ محدوديتي نيست. در ضمن همه چيز قابل اتصال به اين سيستم از داخل يا خارج بنا هست. بهتر است دانشجويان و اساتيد محترم با اين سيستم آشنايي پيدا بکنند و رسانه¬ها هم مي¬توانند در جهت آشنايي بيشتر مردم با اين سيستم کمک کنند. اين سيتم هيچ محدوديتي به صورت سنتي يا صنعتي ندارد و اين بستگي به قدرت طراح دارد.
9- دماي بتن ريزي و تعداد طبقات در اين سيستم به چه صورت است؟
حداقل گرماي مخلوط بتن بالاي 4-5 درجه است. در صورتي که در دماي زير صفر بتن ريزي انجام شود، عمليات سخت شدن بتن با همان حرارت ناشي از گيرش اوليه ادامه مي يابد. در مورد بتن ريزي در هواي گرم، قالب پلي استايرن اجازه خروج آب بتن را به صورت تبخير از مخلوط بتن نمي دهد و اين رطوبت تا سخت شدن کامل بتن باقي مي ماند.
10- در مورد چرخه سبز و قابليت بازيافت سيستم به چه صورت عمل مي کند؟
سازه اصلي سيستم جداي از يک سيستم بتن آرمه نيست، تمام ملاحظاتي که بايد در سيستم بتن آرمه رعايت شود در اين جا نيز وجود دارد. مصالحي که به عنوان قالب استفاده مي شوند کاملاً قابليت بازيافت دارند. از جمله پلي استايرن و مصرف مجدد آن و ورق هاي گالوانيزه که به عنوان ضايعات آهن امکان استفاده مجدد دارد.
11- در مورد نصب وسايل خانه مانند تابلو چه کار بايد کرد؟
چيز هاي سبک مانند تابلو روي همان رويه 5/1 سانتيمتري ( گچ برگ يا ملات) نصب مي شوند و مشکلي ندارد. عناصر سنگين تر مانند کابينت آشپزخانه در سيستم پارتيشن چون در هر 30 سانتيمتر يک استاد داريم، مي توان محل پيچ کردن را روي استادها انجام داد.
12- ظرفيت توليد سيستم در طول يک سال چه مقدار است؟
کارخانه يک ميليون متر مربع سطح در سال توليد مي کند. و طبق الگوي مصرف حدود 4000 تا 4500 واحد مسکوني مي شود.
13-آيا فوم قالب گيري بعد از عمليات خواهد ماند؟
اين فوم ها بعد از بتن ريزي باقي مي مانند. فوم ها هنگام بتن ريزي کار قالب را انجام مي دهند و بعد از آن کار عايق را مي کنند.
14- عکس العمل سيستم در برابر آتش به چه صورت است؟
چيزي که در اين محصولات رعايت مي شود اين است که در اثر رسيدن شعله به هر نقطه از جسم عمل انتشار شعله از طريق سوختن خود جسم ادامه پيدا نمي کند. اگر ما شعله اي را به اين قطعات نزديک کنيم در همان نقطه مشتعل مي شود، ذوب مي شود و اگر شعله را عقب ببريم تمام مي شود و بقيه پلي استايرن دچار حريق نمي شود و شعله ادامه پيدا نمي کند. طبق آيين نامه بايد حداقل يک پوشش محافظ روي اينها باشد تا زماني که ساکنين در صورت خاموش نشدن آتش فرصت کافي براي تخليه ساختمان را داشته باشند. در استانداردهاي آتش نشاني اين ها به صورت يک عدد f و يک عددي که بعد از آن به صورت دقيقه بيانگر زمان آن است مطرح مي شوند. 60f، 90f، 120f که به تعداد طبقات ساختمان، اهميت بنا و زمان تخليه بر مي گردد. در اين سيستم ها حدود 5/1 سانتيمتر پوشش هاي معدني وجود دارد و براي آن مقاومت 120f را حاصل مي کند.
گازي که بر اثر سوختن متصاعد مي شود، گاز کشنده به مفهوم سيانور نيست. گاز2co و هايت گازco . ولي چون از نظر جرم، جرم يک متر مکعب قالب سازه 20-25 کيلو گرم است مقدار گاز هم آنچنان زياد نيست که فرد را در ساختمان محبوس کند و يا آن را وادار به فرار کند.
15- آيا اين سيستم قابليت استفاده در ساختمان هاي اسکلت فلزي را دارد؟
مي توان آن را به صورت ديوار برشي در بين ستون ها و يا المان هاي سقفي و براي پوشش کف ها استفاده کرد. پارتيشن ها را مي توان با تمهيداتي در روي نماي ساختمان ها استفاده کرد، که هم مسئله عايق صدا و هم عايق حرارت و اتصال به عناصر نما را جوابگو باشد.
16- قابليت هاي سيستم در سطوح منحني به چه صورت است؟
المان هاي ديوار باربر قابليت ايجاد در مدول هاي کمتر از 20/1 را دارد وسطوح منحني در حد قوس دور پله شدني است.
17- آيا شرايط بتن مورد استفاده ويژه است؟
با توجه به اين که پوشش دور آرماتور در حدود 5/2 سانتيمتر است توصيه مي شود اندازه دانه درشت زير 20 ميليمتر و حدود 16 در حد شن هاي نخودي باشد. در ضمن در بتن استفاده از روان کننده توصيه مي شود. با ايجاد اين تدابير از پر شدن قالب توسط بتن اطمينان حاصل مي کنيم.
18- ويبره کردن بتن در اين روش به چه صورت است؟
ويبرۀ بدنه شدني است. به شرطي که لوله اي دور قالب بگردانيم که با ايجاد ويبره حرکت به طول 4-5 متر منتقل شود. ويبره به صورت موضعي هم با توجه به اينکه فضايي حدود 15-16 سانتيمتر در وسط داريم، شدني است. البته استفاده از بتن روان و بتن خودتراز شونده که مقاومت هاي سازه اي هم مي دهد مناسب ترين راه ها است.
19- گردش ماشين در پارکينگ اجرا شده با اين سيستم به چه صورت است؟
با توجه به اين که در سقف قابليت اجراي تير موجود است، مي توان طراحي پلان را طوري انجام داد که حجره هاي پارکينگ در جهت طولي ديوار باشد و دهانه لازم را براي گردش ماشين فراهم کرد. در صورتي که اين راه ها جواب نداد مي توان در چند نقطه از ستون استفاده کرد.
20- وزن تمام شده ساختمان چه مقدار است؟
وزن بار مرده طبقات بين 450-475 کيلوگرم بر سانتيمترمربع است. با توجه به اين که سيستم قابليت عبور لوله ها را از داخل سقف دارد، احتياج به بردن لوله ها در کف و پوشاندن آن با پوکه نيست. عدد گفته شده بدون پوکه ريزي به علاوه وزن خود سازه و ديوارها، باري است که به فونداسيون وارد مي شود. ضخامت ديوار در ساختمان هاي 4-5 طبقه 15 يا بسته به طرح معماري 20 سانتيمتر است و در بقيه طبق آيين نامه ايران 15 سانتيمتر مي باشد و تعداد طبقات 4-5 طبقه مناسب ترين تعداد است.
21- پلي استايرن در حرارت بالا ذوب مي شود. اين براي ديوار مانعي ندارد چون شره نمي کند ولي براي سقف چون سقف در اثر حرارت ترک مي خورد اين مواد مذاب پايين ميريزند و خطرناک مي شود، در اين سيستم چه تدابيري انديشيده شده است؟
پلي استايرن در دماي 110 درجه ذوب مي شود. ريزش پلي استايرن ذوب شده وقتي اتفاق مي افتد که لايه معدني رويه آن از بين رفته باشد و تا آن زمان ساکنين ساختمان از آن جا خارج شده اند و حدود 100 دقيقه گچ از ريزش پلي استايرن جلوگيري مي کند.

بتن پیش تنیده پیش کشیده

منبع : وبلاگ مهندس فرید - دانشجویان دارالفنون قزوین

بتن پیش تنیده پیش کشیده (Pre-tensioned concrete ) :

بتن پیش کشیده بتنی است که کابل های پیش تنیدگی آن قبل از ریختن بتن کشیده شده باشند . در بتن پیش کشیده کابل های داخل بتن به بتن چسبیده اند و در واقع کابل بدون غلاف داخل بتن جای می گیرد و بعد از اینکه بتن به مقاومت مشخصه رسید ، کابل ها را از تکیه گاههای دو طرف آزاد کرده و قسمت اضافی بیرون مانده از بتن را قطع می نمایند . تمام نیروی پیش تنیدگی به طور کامل در طولی از کابل به بتن منتقل می شود که این طول انتقال ، بستگی به نوع سطح فولاد ، شکل مقطع و قطر آن دارد . همچنین مقاومت بتن نیز در آن موثر می باشد همانند تولید شمع ها و تیرهای پیش ساخته .

بتن پیش تنیده پیش کشیده

بتن پیش کشیده

سقف بتنی

برای جلوگیری از وارد شدن ضربه به بتن در موقع انتقال نیروی پیش تنیدگی ، باید این نیرو به طور آرام و تدریجی به بتن منتقل شود . همچنین قطعه بتنی باید بتواند به راحتی در روی بستر خود بلغزد تا جلوی به وجود آمدن نیروهای داخلی در اثر اصطکاک گرفته شود .

یکی از خاصیت های مهم بتن پیش کشیده این است که می توان چندین عضو یک شکل را در آن واحد بین دو تکیه گاه ریخته و پس از گرفتن بتن با قطع کردن کابل های مشترک ، آنها را از هم جدا کرد . این کار از نظر اقتصادی بسیار مقرون به صرفه می باشد ، زیرا عمل کشیدن کابل ها برای تمام عضوها فقط یکبار انجام می شود همانند تولید قطعات پیش ساخته Hallow-core که مراحل تولید به شکل زیر می باشد .

خاصیت های مهم بتن

بتن

بتن تنیده

مروری بر روشهای بازیافت آسفالت

مروری بر روشهای بازیافت آسفالت

(در فرمت پی دی اف)



منبع : ایران سازه

مقاله دستگاه های غیرمخرب تعیین دانسیته آسفالت

این مقاله در ارتباط با دستگاه های غیرمخرب تعیین دانسیته آسفالت و مقایسه بین راههای بتنی و آسفالتی میباشد.

نوع فایل: Word

تهیه کننده : مهدی حاجی کندی

یك بتن ایده آل

یك بتن ایده آل

بتن مصالحی است متشكل از سنگدانه (شن وماسه حدودا 70 درصد) و مابقی آب و سیمان است. بتن بعد از 28 روز به حدود 90 درصد از مقاومت نهایی خود
می رسد و هر آن به مقاومت آن افزوده می شود تا به مقاومت كامل خود برسد.
برای دستیابی به یك بتن ایده آل باید نسبت آب به سیمان مناسب بوده، دانه بندی استاندارد و مقاومت و سختی كافی سنگدانه ها (شن وماسه) و مخلوط كردن آنها با نسبت های تعیین شده نیز باید بر اساس
دستور العمل های موجود باشد. استفاده از نوع سیمان (تیپ 1،۲، ۳، 4،۵، ضد سولفات) متناسب با شرایط محیطی و مقاومت مورد نیاز مهمترین عامل در كیفیت بتن است، متراكم كردن كامل و هواگیری بتن در هنگام بتن ریزی به كمك لرزاندن بتن در مدت زمان معین برای خروج آب و حباب اضافی بتن و جلوگیری از تخلل (حفره حفره شدن) بتن و در نتیجه كاهش مقاومت آن بعد از گیرش بتن نتیجه ای بی نقص را به همراه خواهد داشت.

نکته های اجرایی در ساختمان - قسمت چهارم

نکته های اجرایی در ساختمان - قسمت چهارم

151.     اگر توسط سفال زهكشی كنیم باید حتما درز قطعات را با ملات پركنیم.
152.     حداقل شیب لوله های زه كشی به سمت خوضچه 2 تا 4 درصد می باشد.
153.     حداقل شیب لوله های فاضلاب 2 درصد است.
154.     برای جلوگیری از ورود بو به داخل ساختمان ، شترگلو را نصب می كنند.
155.     عالیترین نوع لوله كشی فاضلاب از نوع چدنی می باشد كه با این وجود در اكثر ساختمانها از لوله های           سیمانی استفاده می شود كه ضعف این لوله ها شكست در برابر فشارهای ساختمان می باشد.
156.      سنگ چینی به سبك حصیری رجدار بیشتر در دیوار و نما سازی استفاده می شود.
157.      ضخامت سنگهای كف پله و روی دست انداز پنجره 5/4 سانتیمتر می باشد.
158.      جهت اتصال سنگهای نما به دیوار استفاده از ملات ماسه سیمان و قلاب مناسبتر می باشد كه جنس                 قلابها از آهن گالوانیزه می باشد.
159.      سنگ مسنی معمولا در روی و كنار كرسی چینی نصب می شود و زوایای این سنگ در نماسازی حتما            بایستی گونیای كامل باشد.
160.     در نما سازی طول سنگ تا 5 برابر ارتفاع آن می تواند باشد.
161.      معمولا 30 درصد از سنگهای نما بایستی با دیوار پیوند داشته باشند كه حداقل گیر سنگهای نما سازی             در داخل دیوار 10 سانتیمتر است.
162.      در بنائی دودكشها باستی از مخلوطی از اجزاء آجر استفاده شود.
163.      در علم ساختمان دانستن موقیعت محلی ، استقامت زمین ، مصالح موجود ، وضعیت آب و هوایی منطقه            برای طراحی ساختمان الزامی می باشد.
164.      در طراحی ساختمان ابتدا استقامت زمین نسبت به سایر عوامل الویت دارد و لازم به ذكر مقاومت                  خاكهای دستی همواره با زمین طبیعی جهت احداث بنا هرگز قابل بارگذاری نیست.
165.      زمینهای ماسهای فقط بار یك طبقه از ساختمان را می تواند تحمل كند.
166.      هنگام تبخیر آب از زیر پی های ساختمان وضعیت رانش صورت می گیرد.
167.      زمینی كه از شنهای ریز و درشت و خاك تشكیل شده دج نامیده می شود كه مقاومت فشاری زمینهای             دج 10-5/4 كیلوگرم بر سانتیمتر مربع می باشد.
168.      مطالعات بر روی خاك باعث می گردد وضع فونداسیون ، ابعاد و شكل آن بتوانیم طراحی كنیم.
169.      در صحرا برای آزمایش خاك از چكش و اسید رقیق استفاده می گردد.
170.      سیسموگراف همان لرزه نگار است.
171.      خاكی كه برنگ سیاه قهوه ای باشد مقاومتش بسیار عالی است كه نفوذ آب در آنها كم و به سختی                  انجام می گیرد.
172.       سنداژ یا گمانه زنی همان میله زدن در خاك و برداشت خاك از زمین می باشد.
173.       اوگر همان لوله حفاری است.
174.      خاك چرب به رنگ سبز تیره و دارای سیلیكات آلومینیوم آبدار است.
175.      معیار چسبندگی خاك این است درصد دانه های آن كوچكتر از 002/0 میلیمتر باشد.
176.      اصطلاحا خاك مرغوب زد نامگذاری می شود.
177.      برای جلوگیری از ریزش بدنه و ادامه پی كنی و همین طور جلوگیری از نشست احتمالی ساختمان               همسایه و واژگونی آن و جلوگیری از خطرات جانی باید دیوار همسایه را تنگ بست كه تحت زاویه 45              درجه انجام می گیرد.
178.      دیوار اطراف محل آسانسور معمولا ازمصالح بتون آرمه می سازند.
179.      پی سازی كف آسانسور معمولا 40/1 متر پایین تر از كفسازی است.
180.      قدیمی ترین وسیله ارتباط دو اختلاف سطح بواسطه شیب را اصطلاحا رامپ می گویند كه حداكثر شیب          مجاز آن 12 درصد می باشد كه ات 5/2 درصد آن را میتوان افزایش داد.
181.      برای ساختن پله گردان بیشتر از مصالح بتون آرمه و آهن استفاده می شود.
182.      پله معلق همان پله یكسر گیردار است.
183.      پله آزاد در ورودی ساختمان به حیاط یا هال و نهار خوری استفاده می شود.
184.      پله های خارجی ساختمان حتی الامكان می بایست آجدار باشد.
185.      به فضای موجود بین دو ردیف پله چشم پله می گویند.
186.      فواصل پروفیل های جان پناه پله 12-7 سانتیمتر می باشد.
187.      شاخكهای فلزی جانپناه بهتر است كه از پهلو به تیر آهن پله متصل شود.
188.      سرگیر یا حدفاصل بین دو ردیف پله كه رویهم واقع می شوند حداقل 2 متر می باشد.
189.      طول پله مساوی است با تعداد كف پله منهای یك كف پله.
190.      پیشانی پله به سنگ ارتفاع پله اطلاق می شود.
191.      برای جلوگیری از سرخوردن در پله لب پله ها را شیار و اجدار می سازند و گاهی اوقات لاستیك                  -            می كوبند
192.      اتصال پله های بالا رونده به دال بتنی (پاگرد) یه روی دال بتنی متصل می شوند ولی پله های پایین رونده           در دال بتنی بایستی به مقابل دال بتنی وصل شوند.
193.      اجرای جانپناه پله معمولا با مصالح چوبی زیاتر می باشد.
194.      پله هایی كه مونتاژ می شوند به پله های حلزونی معروف هستند.
195.      از نظر ایمنی اجرای پله فرار با مصالح بتنی مناسبتر است.
196.      تیرهای پوشش دهنده بین دو ستون (روی پنجره ها و درب ها ) نعل درگاه نام دارد كه انتقال بار توسط آن         یكنواخت و غی یكنواخت است.
197.      گره سازی در چهار چوبهای درب و پنجره و دكوراسیون بكار می رود.
198.      تحمل فشار توسط بتن و تحمل كشش توسط فولاد را به اصطلاح همگن بودن بتن و فولاد می نامند.
199.      بالشتك بتونی در زیرسری تیرآهن های سقف مصرف می شود كه جنس آن می تواند فلزی ، بتونی زیر           سری و بتونی مسلح باشد.
200.      در اجرای تیر ریزی سقف با تیرآهن ، مصرف بالشتك كلاف بتنی و پلیت مناسبتر است.
201.      بالشتك های منفرد زیرسری ، حداقل ریشه اش از آكس تیر ریزی سقف 25 سانتیمتر است.
202.      اجرای مهار تیر ریزی سقف با میلگرد معمول تر می باشد.
203.      برای تراز كردن تیر ریزی سقف باید بوسیله سیمان همه در یك افق ترازی قرار گیرد.
204.      طاق ضربی از نظر ضخامت به سه دسته تقسیم می شودكه معمول ترین آن نیم آجره می باشد كه              مهمترین عامل مقاومت در طاق ضربی خیز قوس مناسب است.
205.      در زمستان پس از دوغاب ریزی طاق ضربی ، بلافاصله بایستی كف سازی كامل روی سقف انجام شود.
206.      اگر هوا بارانی باشد پس از اتمام طاق ضربی نباید دوغاب ریخت.
207.      سقفهای بتنی قابلیت فرم(شكل) گیری بهتری دارند.
208.      وظیفه انسجام و انتقال نیروها در سقفهای بتنی بعهده آرماتور می باشد.
209.      اودكادر سقف های بتنی به منظور خنثی كردن نیروی برشی بكار می رود.
210.      بطور نسبی عمل بتون ریزی بین دو تكیه گاه می بایست حداكثر طی یك روز عملی شود.
211.      از ویژگی های سقفهای مجوف سبكی آن است كه در این سقف ها آرماتور گذاری بصورت خرپا می           باشد.
212.      تفاوت سقف های پیش فشرده با سقف های مجوف سفالی كشیده شدن آرماتورها می باشد.
213.      حداقل زمان بریدن میلگردها در سقفهای پیش تنیده معمولا 7 روز می باشد.
214.      نیروی كششی ذخیره شده در آرماتور سقفهای پیش تنیده عامل خنثی كننده نیروی فشاری است.
215.      در سقفهای مجوف هنگامی از تیرهای دوبل استفاده می شود كه دهانه و طول تیر زیاد باشد.
216.      قبل از ریختن پوشش بتون در اجرای تیرچه بلوكها ابتدا می بایست سطح تیرچه و بلوك مرطوب شود.
217.      اصطلاحا میش گذاری در بتن مسلح آرماتورهای شبكه نمره كم اطلاق می گردد.
218.      حداكثر فاصله دو تیر در سقفهای چوبی 50 سانتیمتر می باشد.
219.      معمولا زمان باز كردن قالبهای مقعر در سقف های بتونی 5 روز می باشد.
220.      استفاده از قالبندی مقعر بتنی در سقفهای اسكلت فلزی و بتنی معمولتر است.
221.      كابلهای برق در سقفهای مقعر داخل لوله های فولادی تعبیه می شود.
222.      در ساختمان هایی كه بیشتر مورد تهدید آتش سوزی بهتر است نوع بنا بتنی باشد.
223.      در كارخانه های صنعتی معمولا از سقف اسپیس دكس استفاده می شود.
224.      اصطلاحا مفهوم سرسرا همان سقف نورگیر است.
225.      در شیشه خورهای نورگیر سقف برای فضاهای وسیع از سپری استفاده میشود زیرا از خمش در طول               -          جلوگیری می كند.
226.      مهمترین مزیت سقفهای كاذب آكوستیك بر سایرسقفهای كاذب عایق در برابر صدا می باشد.
227.      مهمترین مزیت سقفهای كاذب آلومینیومی عدم اكسیداسیون آن می باشد.
228.      روش جلوگیری از زنگ زدگی آرماتور در بتن این است كه جرم آن را  می گیریم و داخل بتن قرار می دهیم.
229.      اتصال سقف كاذب در راستای دیوارها باعث پیش گیری از جابجایی سقف و تركهای موئین خواهد شد.
230.      قرنیز یكطرفه آب را به یك سمت منتقل می كند و هنگامی از قرنیز دو طرفه هنگامی استفاده می شود           كه دو طرف دیوار آزاد باشد.
231.      قرنیز حتما باید آبچكان داشته باشد كه آبچكان شیاره زیر قرنیز می باشد.
232.      قرنیزی كه توسط آجر چیده می شود هره چینی می نامند.
233.      قرنیز پای دیوارهای داخلی به منظور جلوگیری از مكش آب توسط گچ و … و  جلوگیری از ضربه ها و            -          خراشها استفاده می شود و حتما باید آبچكان داشته باشد.

نکته های اجرایی در ساختمان - قسمت دوم

نکته های اجرایی در ساختمان - قسمت دوم
51.       طول پله عبارت است از جمع كف پله های حساب شده با احتساب یك كف پله بیشتر.
52.       آجر جوش بیشتر در فونداسیون مورد استفاده قرار می گیرد.
53.       اثر زنگ زدگی در آهن با افزایش قلیایت در فلز نسبت مستقیم دارد.
54.       از امتیازات آجر لعابی صاف بودن سطوح آن ، زیبایی نما ، جلوگیری از نفوز آب می باشد.
55.       در كوره های آجر پزی بین خشتها صفحه كاغذی قرار می دهند.
56.       بهترین نمونه قطعات كششی ضلع تحتانی خرپاها می باشد.
57.       تیرهای بتن آرمه، خاموتها(كمربندها) نیروی برشی را خنثی می كنند.
58.       چسبندگی بتون و فولاد بستگی به اینكه آرماتورهای داخل بتون زنگ زده نباشد.
59.       شیره یا كف بتون زمانی رو می زند كه توسط ویبره كردن هوای آزاد داخل بتون از آن خارج شده باشد.
60.       آلوئك در اثر وجود دانه های سنگ آهن در خشت خام در آجرها پدیدار می گردد.
61.       خشك كردن چوب به معنی گرفتن شیره آن است.
62.       لغاز به معنی پیش آمدگی قسمتی از دیوار.
63.       مقدار كربن در چدن بیشتر از سرب است.
64.       لوله های آب توسط آهك خیلی زود پوسیده می شود.
65.       آجر سفید و بهمنی در نمای ساختمان بیشترین كاربرد را دارد.
66.       آجر خوب آجری است كه در موقع ضربه زدن صدای زنگ بدهد.
67.       لاریز یعنی ادامه بعدی دیوار بصورت پله پله اتمام پذیرد.
68.       كرم بندی همیشه قیل از شروع اندود كاری گچ و خاك انجام می گیرد.
69.       برای خم كردن میلگرد تا قطر 12 میلیمتر از آچار استفاده می گردد.
70.       اسپریس یعنی پاشیدن ماسه و سیمان روان و شل روی دیوار بتونی.
71.       برای دیرگیری گچ ساختمانی از پودر آهك شكفته استفاده می گردد.
72.       مشتو یعنی ایجاد سوراخهائی در سطح خارجی دیوارها جهت ساختن داربست.
73.       بتون معمولا پس از 28 روز حداكثر مقاومت خود را به دست می آورد.
74.       پیوند هلندی از اختلاط پیوندهای كله راسته و بلوكی شكل می گیرد.
75.       وجود بند برشی در پیوند مقاومت دیوار را ضعیف می كند.
76.       كاملترین پیوند از نظر مقاومت در مقابل بارهای فشاری وارده پیوند بلوكی می باشد.
77.       قپان كردن در اصطلاح یعنی شاقولی نمودن نبش دیواره.
78.       خط تراز در ساختمان برای اندازه برداریهای بعدی و مكرر در ساختمان است.
79.       ضخامت و قطر كرسی چینی در ساختمانها بیشتر از دیوارهاست.
80.       پارتیشن میتواند از جنس چوب ، پلاستیك و فایبرگلاس باشد.
81.       از دیوارهای محافظ برای تحمل بارهای افقی و مایل استفاده می شود.
82.       ملات باتارد از مصالح ماسه ، سیمان و آهك ساخته می شود.
83.       مقدار عمق سطوح فونداسیونها از زمین طبیعی در همه مناطق یكسان نیست.
84.       ملات ساروج از مصالح آهك ، خاكستر ، خاك رس ، لوئی و ماسه بادی ساخته می شود.
85.       ملات در دیوار چینی ساختمان حكم چسب را دارد.
86.       ملات آبی اگر بعد از ساخته شدن از آب دور نگهداشته شود فاسد می گردد.
87.       در مجاورت عایقكاری (قیروگونی)از ملات ماسه سیمان استفاده می شود.
88.       برای ساخت ملات باتارد        آب + سیمان    250+آهك     150+ ماسه
89.       پیه دارو تركیبی از مصالح آهك ، خاك رس ، پنبه و پیه آب شده
90.       ابعاد سرندهای پایه دار 1 تا 5/1 عرض و طول 5/1 تا 2 متر .
91.       معمولا برای كرم بندی دیوارهای داخلی ساختمان(اطاقها) از ملات گچ و خاك استفاده می شود.
92.       طرز تهیه گچ دستی یا گچ تیز عبارت است از مقداری آب + گچ بااضافه مقداری سریش.
93.       وجود نمك در ملات كاه گل موجب میشود كه در آن گیاه سبز نشود.
94.       هنگام خودگیری حجم گچ 1 تا 5/1 درصد اضافه می شود.
95.       گچ كشته یعنی گچ الك شده ورزداده + آب.
96.        اندودهای شیمیایی در سال 1948 كشف شد كه تركیب آن پرلیت ، پنبه نسوز مواد رنگی و میكا می باشد كه بعد از 8 ساعت خشك میشوند و بعد از دو تا سه هفته استحكام نهایی را پیدا می كنند و در            مقابل گرما ، سرما و صدا عایق بسیار خوبی هستند.
97.       سرامیك بهترین عایق صوتی است ، زیرا سلولهای هوایی بسته ای دارد كه ضخامت آن 6 تا 10 میلیمتر       -          است.
98.       آكوسیت نیز عایق خوبی برای صداست.
99.        اندازه سرندهای چشم بلبلی 5 میلیمتر است.
100.     سرند سوراخ درشت به سرند میلیمتری مشهور است.

نکته های اجرایی در ساختمان - قسمت اول

نکته های اجرایی در ساختمان - قسمت اول
1.         برای اندازه گیری عملیات خاكی در متره و برآورد از واحد متر مكعب استفاده می شود.
2.         آجر خطائی ، آجری است كه در اندازهای 5×25×25 سانتیمتر در ساختمانهای قدیمی برای فرش كف  حیاط و غیره بكار می رفت.
3.         چنانچه لازم باشد در امتداد دیواری با ارتفاع زیاد كه در حال ساختن آن هستیم بعدا دیوار دیگری ساخته       شود باید لاریز انجام دهیم.                                                                
4.         هرگاه ابتدا و انتهای یك دیوار در طول دیوار دیگری بهم متصل شود ، به آن دیوار در تلاقی گفته می شود.
5.        در ساختمانهای مسكونی (بدون زیرزمین)روی پی را معمولا بین 30 تا 50 سانتی متر از سطح زمین بالاتر          می سازند كه نام این دیوار كرسی چینی است.
6.        قوس دسته سبدی دارای زیبایی خاصی بوده و در كارهای معماری سنتی استفاده می شود.
7.        حداقل ارتفاع سرگیر در پله 2 متر می باشد.
8.        ویژگیهای سقف چوبی : الف) قبلا عمل كلاف كشی روی دیوار انجام می گیرد ب) عمل تراز كردن سقف           در كلاف گذاری انجام می شود ج) فاصله دو تیر از 50 سانتیمتر تجاوز نمی كند د) تیرها حتی الامكان هم         قطرهستند.
9.         گچ بلانشه كندگیر بوده ولی دارای مقاومت زیاد مانند سیمان سفید است.
10.       به سیمان سفید رنگ معدنی اكسید كرم اضافه می كنند تا سیمان سبز به دست آید.
11.       سنگ جگری رنگ كه سخت ، مقاوم و دارای رگه های سفید و در سنندج و خرم آباد فراوان است.
12.       دستگاه كمپكتور ، دستگاهی است كه فقط سطوح را ویبره می كند ، زیر كار را آماده و سطح را زیر سازی          می كند.
13.       عمل نصب صفحات فلزی (بیس پلیتها) در زمان 48 ساعت بعد از بتن ریزی صورت می گیرد.
14.       زمانی كه خاك (زمین) بسیار نرم بوده و مقاومت آن كمتر از یك كیلوگرم بر سانتیمتر مربع باشد  از فونداسیون پی صفحه ای استفاده می گردد.
15.       قطر دایره بتون خمیری ، بر روی صفحه مخصوص آزمایش آب بتون ، حدود 30 تا 35 سانتیمتر می باشد.
16.       حدود درجه حرارت ذوب شدن خاك آجر نسوز 1600 درجه می باشد.
17.       نام آجری كه از ضخامت نصف شده باشد ، آجر نیم لایی نامیده می شود.
18.       نام دیوارهای جداكننده و تقسیم پارتیشن نام دارد.
19.       عمل برداشتن خاك كف اطاق و ریختن و كوبیدن سنگ شكسته بجای آن را بلوكاژ می گویند.
20.       زمین غیر قابل تراكم هوموسی نامیده می شود.
21.       عمق پی های خارجی یك ساختمان در مناطق باران خیز حداقل 50 سانتیمتر است.
22.       نام فضای موجود بین دو ردیف پله چشم نامیده می شود.
23.       در سقف های چوبی حداكثر فاصله دو تیر 50 سانتیمتر است.
24.        سیمان نوع اول برای دیوارها و فونداسیونهای معمولی استفاده میگردد.
25.       اكسید آهن را برای تهیه سیمان قرمز رنگ ، با كلینگر سیمان سفید آسیاب می كنند.
26.       نام دیگر لوله های سیاه بدون درز مانسمان نام دارد.
27.       سریعترین و عملی ترین وسیله اجرای اتصالات ساختمان ،پلها و نظایر جوش می باشد.
28.       حاقل درجه حرارت برای بتن ریزی 10 درجه می باشد.
29.       ضخامت اندود سقف با ملات گچ و خاك باید بین 1 تا 2 سانتیمتر باشد.
30.       اندود زیر قیروگونی ، ماسه سیمان است.
31.       چنانچه گودبرداری از سطح زمین همسایه پائین تر باشد ، حداكثر فاصله شمعها 5/2 متر می باشد.
32.       در پی كنی های كم عمق در زمین های ماسه ای حدود زاویه شیب 30 تا 37 درصد می باشد.
33.       برای ایجاد مقاومت مناسب در طاق ضریس حداقل خیز قوس باید 3 سانتیمتر باشد.
34.       لوله های مانسمان سیاه و بدون درز ، گاز رسانی
35.       در بتون ریزی دیوارها و سقفها ، صفحات قالبی فلزی مناسب ترند.
36.       از اسكدیپر برای خاكبرداری ، حمل ، تخلیه و پخش مواد خاكی استفاده می گردد.
37.       اتصال ستون به فونداسیون به وسیله ستكا انجام می گیرد.
38.       برای لوله كشی فاضلاب یهتر است از لوله چدنی استفاده گردد.
39.       پر كردن دو یا سه لانه از تیرآهن لانه زنبوری در محل تكیه گاهها جهت ازدیاد مقاومت برشی است.
40.       بهترین و با استفاده ترین اتصالات در اسكلت فلزی از نظر استحكام و یك پارچگی اتصالات با جوش             است.
41.       ارتفاع كف داربست جهت اجرای طاق ضربی تا زیر تیرآهن سقف برابر است با قدبنا+پنج سانتیمتر.
42.       در ساختمانهای مسكونی كوچك (یك یا دو طبقه) قطر داخلی لوله های گالوانیزه برای آب رسانی باید                     -          2/1 اینچ باشد.
43.       وجود سولفات سدیم،پتاسیم و منیزیم محلول در آب پس از تركیب با آلومینات كلسیم و سنگ آهك موجود          در سیمان سبب كم شدن مقاومت بتون می گردد.
44.       زمان نصب صفحات بیس پلیت معمولا باید 48 ساعت پس از بتون ریزی فونداسیون انجام شود.
45.       برای ساخت بادبند بهتر است از نبشی ، تسمه ، ناودانی و میلگرد استفاده گردد.
46.        هدف از شناژبندی كلاف نمودن پی های بنا به یكدیگر و مقاومت در برابر زلزله می باشد.
47.       سقفهای كاذب معمولا حدود 30 تا 50 سانتیمتر پایین تر از سقف اصلی قرار می گیرد.
48.       قلاب انتهایی در میلگردهای یك پوتربتونی برای عامل پیوند بیشتر آرماتور در بتون می باشد.
49.       حد فاصل بین كف پنجره تا كف اطاق را دست انداز پنجره میگویند.
50.       در ساخت كفراژ ستونها ، قالب اصلی ستون بوسیله چوب چهارتراش مهار می گردد.

آسيب پذيري در مقابل مواد شيميايي (SUSCEPTIBILITY TO CHEMICAL ATTACK)

آسيب پذيري در مقابل مواد شيميايي (SUSCEPTIBILITY TO CHEMICAL ATTACK)

گفته مي شود كه تري كلسيم آلومينات (C3A) موجود در مخلوط سيمان پرتلند معمولي، در مقابل عوامل شيميايي چون كلريدها و سولفاتها، آسيب پذير مي باشد. براي بهبود بخشيدن به مقاومت مخلوط سيمان پرتلند معمولي در قبال مواد شيميايي موجود در آب، از افزودنيهاي آب گريز (HYDROPHOBIC) كمك گرفته مي شود. رفتار اين افزودنيها مانند عمل آب بند كننده ها (WATER PROOFERS) بوده و براي پايين آوردن نفوذ پذيري بتن به كار مي روند. راه ديگر آن است كه از سيماني استفاده شود كه داراي تري كلسيم آلومينات كمتري باشد.


رواني ضعيف (POOR FLOWABILITY)
تا آنجا كه به رواني يك مخلوط (بتن، ملات، دوغاب) مربوط مي شود، به كارگيري روشها و تجهيزات مورد نياز از اهميت شاياني برخوردار است. زيرا اعمالي چون هم زدن، جا به جا كردن (HANDLING)، حمل و نقل و قرار دادن (PLACING) يك مخلوط بستگي به حد رواني (FLOWABILITY) يا كارآيي (WORKABILITY) دارد.
هچنين به اين نكته نيز بايد توجه داشت كه موقعيت مكاني محل تعمير و قابل دسترس بودن آن، در ميزان رواني و جريان مخلوط نقش تعيين كننده دارد.
يك روش براي بهبود بخشيدن به حد رواني (FLOWABILITY)، اين است كه موقع هم زدن مخلوط، آب بيشتري به آن اضافه گردد. اما اين عمل نتايج منفي در پي خواهد داشت. بنابراين به نظر مي رسد كه راه حل در كمك گرفتن از روان كننده ها (PLASTICIZERS) و ساير افزودنيهايي كه باعث كاهش آب مخلوط مي گردد، باشد. با علم به اينكه وظيفه آب موجود در مخلوط، فراهم آوردن رواني لازمه و نيز امكان انجام تركيبات شيميايي با دانه هاي سيمان مي باشد، لذا انتخاب روان كننده (PLASTICIZERS)و ساير مواد كاهندهء آب بايد به طريقي انجام پذيرد كه به وظيفه دوم آب مخلوط يعني فراهم آوردن امكان انجام تركيبات سيمان در مخلوط نه تنها آسيب نرساند بلكه آن را تسهيل نمايد.
باور اين است كه روان كننده ها (PLASTICIZERS) داراي خواصي هستند كه باعث كاهش كشش سطحي (SURFACE TENSION) آب مخلوط شده و با پخش نمودن ذرات سيمان در تمامي فاز AQUEOUS، اين ذرات توسط آب مخلوط كاملاً احاطه شده به نوبه خود باعث بهبود انجام تركيبات شيميايي در درون مخلوط مي شوند.

بتن، ملات، و دوغابهاي منبسط شونده

بتن، ملات، و دوغابهاي منبسط شونده
(EXPANDING MORTARS, GROUTS & CONCRETES)

دليل عمده استفاده از بتن، ملات و دوغابهاي منبسط شونده آن است كه بتوان بر مشكلات انقباض (جمع شدگي) كه معمولاً در به كارگيري مواد با سيمان معمولي مشاهده مي شود فائق آمد. مكانيزم عمل به نحوي است كه باعث مي شود مواد تعميري به هنگام گيرش و سخت شدن (عمل آوري (CURINGانبساط پيدا كرده و با عمل انقباض مخالفت و آن را خنثي نمايد.

بتن و ملات داراي الياف مصنوعي
(FIBRE REINFORCED CONCRETE & MORTAR)
اساساً افزودن الياف مصنوعي به بتن يا ملات به سه منظور اصلي افزايش مقاومت كششي، افزايش مقاومت خمشي و افزايش در مقابل ضربات ناگهاني (IMPACT RESISTANCE) صورت مي گيرد.
به طور كلي دو گروه اصلي از الياف مصنوعي وجود دارند كه براي منظورهاي فوق مورد استفاده قرار مي گيرند. مدلهاي گروهي از اين الياف مصنوعي پايينتر از مدلهاي بتن يا ملات مي باشد؛ مانند نايلون (NYLON) و پلي پروپيلن (POLYPROPYLENE). در حاليكه مدولهاي گروه دوم بالاتر از مدولهاي بتن يا ملات هستند؛ مانند شيشه (GLASS)، استيل و كربن. از بتن يا ملات مسلح به الياف مصنوعي به طور موفقيت آميزي به عنوان لايه هاي نازك روكشي (OVERLAYS) روي جاده ها، خيابانها و باندهاي فرودگاه (RUNWAYS) استفاده شده است. همچنين از اين سيستم مي توان در مكانهايي كه خلأزايي(CAVITATION) و فرسايش (EROSION) مشكلاتي را باعث شده است (مانند روي سرريزهاي سدها) و ساير مراحل خاص كمك گرفت. روشهايي نيز ابداع شده است كه با به كارگيري آنها مي توان از مخلوطهاي واجد الياف مصنوعي، در سيستمهاي بتن پاشي استفاده نمود.
اخيراً گزارش شده است كه افزايش الياف مصنوعي در سيستمهاي باعث ازدياد قدرت چسبندگي لايه هاي تعميري به بتن مادر مي گردد. البته سيستمهاي انحصاري نيز وجود دارند كه براي تعميرات بتن به كار مي روند و در آنها علاوه بر پليمرها، الياف مصنوعي نيز ديده مي شود. عليرغم موفقيتهايي كه تا امروز به دست آمده، ممكن است پيشنهاد اين سيستم به عنوان يك ماده تعميري، ناپخته به نظر برسد چرا كه مسأله دوام و پايداري آن در دراز مدت، در مرحله آزمون و بررسي و مطالعه قرار دارد. نكته اي كه بايد مورد توجه خاص قرار گيرد، نحوه مخلوط و پخش شدن (DISPERSION) الياف مصنوعي در سيستم است. بارها مشاهده گرديده كه به هنگام مخلوط نمودن الياف با ساير مواد بتني يا ملات (سيمان- سنگدانه- آب و…)، الياف مصنوعي تمايل به جمع شدن در يك جا داشته يا در جهات مشخصي قرار مي گيرند. كه اين امر توزيع برابر و يكنواخت الياف را با اشكال مواجه مي سازد.

استفاده از اپوکسی

 بعضي از اين عوامل محدود كننده در استفاده از اپوکسی
1- سطح بتن مادر بايستي مقاوم، تميز و براي بيشتر سيستمهاي اپوكسي خشك باشد.
2- حرارت حاصل از تركيب و عمل آوري اپوكسيها مي تواند به خاطر اثر حرارت زاي آنها(EXOTHERMAL)، به طور فاحشي بالاتر از سيستمهاي تعميري با سيمان معمولي باشد.
3- با اينكه قدرت انقباض (جمع شدگي) سيستمهاي اپوكسي به گفتهء توليد كنندگان آنها در حد ناچيزي مي باشد، معذالك نمي توان از اثرات منفي آنها صرفنظر نمود. اين موضوع خصوصاً وقتي با اثرت حاصل از حرارت ايجاد شده (EXOTHERMIC) همراه باشد، ممكن است نتايج مخربي را به بار آورد.
4- براي مصرف اپوكسيها حداقل درجه حرارت محيط معمولاً 5 درجه سانتيگراد قيد مي شود كه بايستي كاملاً مراعات گرديده و ممكن است كنترل دوباره اين موضوع ضرورت يابد. البته اين محدوديتها در صورتي است كه انتظار داشته باشيم سيستم حداكثر مقاومت خود را در مدت زمان نسبتاً كوتاهي به دست آورد.
5- اغلب سيستمهاي اپوكسي در مقابل رطوبت حساس مي باشند. بنابراين هنگام استفاده از سيستمهاي اپوكسي، رطوبت و خيسي محيط، بايستي مورد توجه و مطالعه قرار گيرد.
6- نسبت اجزا و همچنين اختلاط كامل اجزاي سيستمهاي اپوكسي بايستي دقيقاً مورد كنترل و بررسي قرار گيرد. بايستي يادآور شد كه اهميت اين مطلب در نظر افرادي كه دائم با مواد سيماني معمولي سر و كار دارند به قدري نيست كه توجه دست اندكاران را آن گونه كه شايسته است به خود معطوف دارد.
7- مسأله ايمني از اهميت ويژه اي برخوردار بوده و بايستي حتماً در تمامي مراحل مراعات شود. بايد توجه داشت كه اجزاي سيستمهاي اپوكسي در صورت تماس با پوست و يا استشمام بخار اپوكسي توسط افراد، ايجاد ناراحتي بسيار جدي مي نمايد. علاوه بر اين بعضي از اجزا قابل احترق بوده كه رعايت اصول و ملاحظات ايمني را حتمي و ضروري مي سازد. اماكني كه در آنها اقدام به مصرف آپوكسي مي گردد، بايستي از تهويه مؤثر و مطلوبي برخوردار باشند. خصوصاً هنگامي كه اپوكسي ها در فضايي محدود و سر بسته به كار گرفته مي شوند.
8- بايد توجه داشت كه بين مدول الاستيسيته (ضريب ارتجاعي) اپوكسي ها و ضريب ارتجاعي بتن مادر و همچنين بين ضريب انبساط حرارتي اين دو، اختلاف فاحش و قابل تأملي وجود دارد كه در صورت نياز، انجام مقايسه و به كارگيري تمهيدات لازم ضروري است. اختلاف قابل ملاحظهء ضرايب فوق الذكر باعث تشكيل تنشهاي برشي در مرز بين لايه اپوكسي و بتن قديم گرديده و در صورت ازدياد بيش از حد، باعث جدا شدگي دو سيستم از يكديگر مي شود.

بتن، ملات و دوغاب ساخته شده از سيمان پرتلند معمول

بتن، ملات و دوغاب ساخته شده از سيمان پرتلند معمول
(ORDINARY PORTLAND CEMENT CONCRETE, MORTAR AND GROUT)
اين سيستمها كه به عنوان مواد تعميري در نظر گرفته مي شوند، امتيازاتي از قبيل: تغيير حجم مشابه با بتن مادر، شباهت ظاهري، ارزاني نسبي در مقايسه با ساير سيستمها و در دسترس بودن و موجود بودن دانش لازم در مورد خود سيستمها را، دارا مي باشند. در حالي كه جايگزين كردن قسمتهايي از سازه و همچنين نقاطي كه عميقاً نياز به تعمير دارند، با بتن انجام مي گيرد؛ ملات براي قسمتهايي كه كمتر از 35 ميليمتر عمق دارند. بايد توجه داشت كه اندازه سنگدانه بتن نيز مي تواند در انتخاب سيستم تعميري دخالت داشته باشد. نلات سيماني را مي توان با دست، پمپ و يا جريان ثقلي بر روي قسمتهاي تعميري اعمال نمود. خصوصاً در نقاطي كه عمق تعمير زياد نبوده و جريان روان و مداوم (CONSISTENCY) دوغاب مورد نياز نباشد، بايستي از ملات استفاده نمود.
دوغاب براي جاهايي مصرف مي شود كه عمق تعمير كم بوده و يا قسمتهاي مورد تعمير قابل رؤيت نيستند. دوغاب را مي توان با استتفاده از جريان ثقلي و يا پمپ اعمال نمود. بايستي توجه داشت كه دوغاب به علت داشتن آب زياد، پس از خشك شدن بيش از ملات و يا بتن با دانه بندي خوب، جمع شدگي حاصل مي كند. در مواردي كه دوغاب به عنوان سيستم تعميري مد نظر قرار مي گيرد، بهتر است دوغابهاي انحصاري با مشخصه هاي فني خاص را مورد توجه و بررسي قرار داد.

قنداق كردن بتن (JACKETING)

قنداق كردن بتن (JACKETING)
براي اينكه مقاومت بتن را در مقابل عوامل مخرب و مزاحمي كه باعث خرابي و خرد شدن آن مي شود، بالا بريم، مي توانيم از مواردي از قبيل فلزات، لاستيك، پلاستيك و يا بتن با مقاومت بالا، جهت پوشش دادن سطح بتني مورد نظر استفاده كنيم. عامل پوششي (حفاظتي) را مي توان با استفاده از ميخ، پيچ، پرچ، چسب، مواد و يا عمل ثقلي روي سطح بتن مورد نظر تثبيت نمود. معمولترين بخشهايي كه در آنها از سيستمJACKETING استفاده مي شود، عبارتند از: تانكها و مخازن، لوله ها، سرريزها، شمعها و غيره كه در معرض عوامل ساينده و يا خورنده قرار دارند.
بتن با سنگدانه از پيش آكنده (PREPLACED AGGREGATE CONCRETE)
در اين روش، سنگدانه هايي كه از نظر دانه بندي داراي شكاف هستند (GAP- GRADED) در داخل حفره ها و يا كانالهايي قرار داده مي شوند و سپس با استفاده از آب، اين سنگدانه ها را كاملاً اشباع مي نمايند (در بعضي اوقات خود كانال و يا حفره از قبل پر از آب مي باشد). سپس ملات و يا دوغاب از پايين ترين نقطه به وسيله پمپ وارد سيستم مي شود، به گونه اي كه آب موجود را جا به جا مي نمايد. اين روش براي محلهايي كه در دسترس نيستند مانند بتنهاي مغروق، بسيار مناسب مي باشد. در مواقعي اين روش به همراه روش قنداق كردن JACKETING نيز مورد استفاده قرار مي گيرد. از اين روش در موارد تعمير شمعها، پايه ها،ستونها،ديوارهاي حائل ABUTMENTS,RETAININGWALLSBASEPLATES, (كف ستون)، تونلها و DAWS استفاده مي گردد.
اگرچه چسبندگي خوب و جمع شدگي كم (LOW SHRINKAGE) از جمله خصوصيات اين روش مي باشد، معذالك خلل و فرجهايي در داخل ين بتن يافت مي شود. با توجه به مهارت و تجهيزات فني پيشرفته كه از ضرورتهاي به كارگيري اين روش مي باشد؛ كار بايستي حتماً به وسيله يا تحت نظر پيمانكاران متخصص انجام گيرد.
لايه هاي سطحي (THIN OR REGULAR RESURFACING)
در اين روش يك لايه يكنواخت (UNIFORM) از مواد تعميري بر روي سطح گسترده اي از بتن اعمال مي شود. اين شيوه بيشتر در تعميرات سطحي كفها و محلهاي عبوري كه از نظر سازه اي يعني استحكام، داراي مقاومت كافي بوده ولي سطح بتن دچار فساد و خرابي و خردشدگي شده است، به كار مي رود.
اعمال يك لايه نازك روي سطح (THIN RESURFACING) را اغلب TOPPING (لايهء رويي) مي نامند كه در اين صورت ضخامت لايه كمتر از پنج سانتيمتر مي باشد. همچنين لايه هاي تعميري كه ضخامت آنها بيش از 5cm باشد، لايه منظم سطحي (REGULAR RESURFACING) ناميده مي شوند.

طرق مختلف ترميم بتن(REPAIR TECHIQUES)

طرق مختلف ترميم بتن (REPAIR TECHIQUES)
در اين قسمت، روشهاي مختلف ترميمي كه در صنعت بتن معمول هستند، شرح داده مي شوند. اين روشها شامل پر كردن تركها، جايگزين نمودن قسمتهايي از سازه كه از دست رفته اند، اضافه نمودن قطعات جديدي براي سازه موجود، اعمال حفاظهاي سطحي و همچنين تعميراتي است كه صرفاً جنبه زيباسازي دارند.
تزريق تركها (CRACK INJECTION)
تركهاي باريكي را مي توان به طريقه تزريق رزينهاي اپوكسي پر نمود. در اين روش، نقاط تزريق متناوباً با فواصل كوتاهي در طول ترك قرار داده شده و سپس سطح ترك كاملاً آب بند(SEAL) مي شود تا از فرار و نشست رزين در مدت تزريق جلوگيري گردد. روش تزريق به اين صورت است كه رزين از يك نقطه تزريق شده و سپس اطمينان حاصل مي گردد كه عمل تزريق تا نقطه بعدي كاملاً صورت گرفته و خلل و فرجهاي اطراف پر شده است. در اين روش، مواد تزريقي به صورت مداوم (لاينقطع) به ترتيب از نقاط مختلف تزريق، پمپ مي شود تا اطمينان حاصل گردد كه علاوه بر مسير اصلي ترك، كليه خلل و فرجها نيز كاملاً پر شده اند.
در صورتي كه كه ابتدا و انتهاي ترك در يك سطح (از جهت ارتفاع) نباشد تزريق بايستي از پايين ترين نقطه آغاز و به بالاترين نقطه ختم گردد؛ و همچنين براي حصول اطمينان از پر شدن مطلوب ترك از مواد تزريقي، از لوله هاي شفاف استفاده مي شود.

نکات حائز اهمیت در سازه های بتنی

نکات حائز اهمیت در سازه های بتنی


1) باید توجه داشت که خم میلگردها به طرف پائین یا داخل المان و خارج از ناحیه پوشش بتنی قرار داشته باشد.
2) عملیات جوشکاری میلگردها در محیطی با دمای زیر 18- درجه سلسیوس مجاز نیست.
3) بعد از پایان پذیرفتن جوشکاری بایستی اجازه داد تا میلگردها به طور طبیعی تا دمای محیط سرد شود،شتاب دادن به فرآیند سرد شدن مجاز نیست.
4) کاربرد همزمان چند نوع فولاد با مقاومت های مشخصه متفاوت در یک المان بتنی مجاز نیست مگر اینکه در نقشه های اجرائی،مهندس محاسب قید کرده باشد.
5) براب مهار میلگردهای فشاری نبایستی از قلاب و خم استفاده نمود.
6) برای میلگردهای با سطح صاف (بدون آج) استفاده از مهارهای مستقیم مجاز نیست.
7) خم کردن میلگردهاي انتظار باید قبل از قالب بندی انجام گیرد.
8) میلگردهای ساده با قطر بیش از 12 میلیمتر را نباید بعنوان خاموت بکار برد.
9) قطر خاموت ها نباید از 6 میلی متر کمتر باشد.
10) مناسب ترین محل قطع و وصله میلگردهای طولی ستون بتنی، در نصف ارتفاع آن است.
11) محل مناسب برای وصله کردن میلگردهای طولی تیرهای بتنی، بیرون از گره تیر با ستون و در محدوده یک چهارم تا یک سوم از طول دهانه از تکیه گاه است.

اثرات مواد زیان آور بر خواص بتن

اثرات مواد زیان آور بر خواص بتن
1.    کربنات سدیم » گیرش سیمان را تسریع می کند،با حداکثر غلظت 0.1%
2.    بی کربنات سدیم » گیرش سیمان را تسریع یا کند می کند با حداکثر غلظت 0.4% تا 0.1%
3.    کلرورها » تسریع در زنگ زدگی آرماتور و کابل های پیش تنیدگی.بیش از 0.06% در بتن پیش تنیده و 0.1% در بتن آرمه خطرناک است.
4.    سولفاتها » اثر نامطلوب روی بتن.به ازای هر 1% سولفات در آب،10% کاهش مقاومت بوجود می آید.
5.    فسفاتها،آرسنات ها و براتها » افزایش زمان گیرش.حداکثر غلظت 0.05%
6.    نمک های مس،روی،سرب،منگنز،قلع » افزایش زمان گیرش.حداکثر غلظت 0.05%
7.    آبهای اسیدی » در صورت وجود اسید کلریدریک و اسید سولفوریک و سایر اسیدهای غیرآلی،حداکثر تا 0.1% بلامانع است و آبهای با 4.5 مجاز نیست.
8.    آبهای قلیایی » در صورت وجود بیش از 0.5% هیدروکسید سدیم و 1.2% هیدروکسید پتاسیم ( نسبت به وزن سیمان ) باشد،مقاومت بتن تقلیل می یابد.
9.    آبهای گل آلود » قبل از مصرف از حوضچه های ته نشینی عبور داده و یا به روش دیگر تصفیه کرد.

عضو کششی

عضو کششی
حداقل تعداد میلگرد کششی دو عدد بوده و سطح مقطع میلگردهای کششی از طریق محاسبه تعیین می شود . در هر صورت ، سطح مقطع میلگرد کششی برای فولاد نرم ، از 0.0025 ، و برای فولاد نیم سخت و سخت ، از 0.0015 برابر سطح مقطع جان تیر نباید کمتر باشد . توصیه می شود قطر میلگرد کششی از 8 میلیمتر کمتر و از 16 میلیمتر بیشتر نباشد. در مورد تیرچه هایی که ضخامت بتن پاشنه آنها 5.5 سانتیمتر یا بیشتر باشد ، می توان حداکثر قطر میلگرد کششی را به 20 میلیمتر افزایش داد. برای صرفه جویی در مصرف فولاد و پیوستگی بهتر آن با بتن ، معمولا از میلگرد آجدار ، به عنوان عضو کششی استفاده می شود. حداکثر سطح مقطع میلگردهای کششی ، بستگی به نوع فولاد و بتن مصرفی دارد و نباید از مقادیر مندرج در جدول زیر بیشتر باشد.


حد جاری شدن فولا بر حسب
کیلوگرم بر سانتیمتر مربع    200    3600    4200  
تاب فشاری بتن 250 کیلوگرم بر سانتیمتر مربع    3.4%    2.98%    2.1%
تاب فشاری بتن 300 کیلوگرم بر سانتیمتر مربع    4.2%    3.7%    2.6%
تاب فشاری بتن 350 کیلوگرم بر سانتیمتر مربع    4.85%    4.24%    3%

مقادیر بالا بر حسب درصد سطح مقطع جان تیر است.
نکته بسیار حائز اهمیت اینست که در عمل باید از تطبیق مقاومت میلگردهای مورد استفاده با مقاومت قید شده در جدولها و محاسبات اطمینان حاصل کرد.
در صورت استفاده از میلگردهای کششی به تعداد بیش از دو عدد ، دو میلگرد طولی باید در سرتاسر طول تیرچه ادامه یابند ، ولی طول مورد نیاز بقیه میلگردها را می توان با توجه به نمودار لنگر خمشی محاسبه و در مقطعی که مورد نیاز نیست ، قطع نمود.
فاصله آزاد بین میلگردهای کششی نباید از قطر بزرگترین دانه شن بتن مورد مصرف در پاشنه تیرچه به اضافه 5 میلیمتر کمتر باشد.
فاصله میلگرد کششی از لبه جانبی بتن پاشنه تیرچه ، به شرط وجود بلوک ، نباید از 10 میلیمتر کمتر باشد و فاصله آزاد میلگرد کششی از سطح پائین تیرچه ( پوشش بتنی روی میلگرد ) نباید از 15 میلیمتر کمتر باشد . در صورتی که از کفشک ( قالب سفالی ) استفاده شود ، فاصله آزاد میلگرد کششی از قسمت بالائی کفشک نباید از 10 میلیمتر کمتر باشد.
پوشش روی میلگردها که در بالا شرح داده شد ، مربوط به تیرچه های مورد استفاده برای فضاهای داخلی ساختمانهاست. در صورتی که این تیرچه ها در محیط های باز ، مانند بالکن یا در فضاهایی که دارای مواد زیان آور برای بتن می باشند ، ادامه یابند ، اجرای یک لایه اندود ماسه سیمان پر مایه به ضخامت حداقل 15 میلیمتر در زیر پوشش ، ضروری است. در ساختمانهائی که خورندگی فراگیر است یا در اقلیمهای خورنده باید حداقل ضخامت پوشش بتنی روی میلگردها رابه 30 میلیمتر افزایش داد.

انواع سقف‌هاي بتني

انواع سقف‌های بتنی
یكی از اجزای اصلی تشكیل‌دهندة انواع ساختمان‌ها، سقفهای بتنی هستند كه نقش اساسی آنها انتقال نیـروهای قائم و افقی ناشی از وزن مـردة سقف، سربارها و نیروهای با دو زلزله به تیرها و ستونها و دیوارهای بابر است. در ضمن، اتصال كلیه اجزای بابر قائم (ستونها و دیوارها) به یكدیگر، موجب تقویت آنها شده و به این ترتیب، كل ساختمان در مقابل نیروهای وارده، به طور واحد واكنش نشان می‌دهد.
نظر به اینكه سقفها سهم نسبتاً زیادی از قیمت تمام شده ساختمان را به خود اختصاص می‌دهند. طراحان ساختمان، سیستم‌های متنوعی را به منظور هرچه اقتصادی‌تر كردن آنها، ابداع و اجرا كرده‌اند كه صرفه‌جویی در مصرف بتن و فولاد، كاهش یا حذف قالب‌بندی، بهبود روشهای ساخت و ارتقای كیفیت اجرای محورهای اساسی، كوششهای انجام شده را تشكیل می‌دهند. در زیر، روند اساسی این مراحل پیشرفت به طور مختصر شرح داده می‌شود.
برای صرفه‌جویی در مصرف بتن و سبكتر كردن وزن سقف، قسمتی از مقطع سقف كه در منطقة كششی قرار می‌گیرد، حذف و فقط آن مقدار از سطح مقطع بتن كه برای جاگذاری آرماتورهای عرضی و كششی لازم است، باقی گذاشته می‌شود. این كار به ویژه برای كاهش وزن مردة سقف و ساختمان، دارای اهمیت خاصی است. فاصله محلهای باقی‌مانده به حد كافی نزدیك به هم انتخاب می‌شوند، تا مناطق فشاری و كششی مقطع بتنی سقف به طور یكپارچه عمل كنند و سقف حالت اولیة خود را از دست ندهد. این روش منجر به طرح دالهای مجوف، با پشت‌بند، لانه زنبوری مانند آنها گردیده است. مصرف بتن در این نوع سقفها، به حدود   مقدار اولیه، و وزن سقف نیز تقریباً به همین میزان كاهش می‌یابد. از طرف دیگر، به علت سبك‌تر شدن وزن سقفها، در مصرف میلگرد و هزینة اجرای بقیة قسمتهای باربر ساختمان، صرفه‌جویی قابل ملاحظه‌ای شود.
قالب‌بندی برای ایجاد فضاهای مجوف در دال، معمولاً به روشهای زیر انجام می‌شود:
در روش نخست، برای اجتناب از قالب‌بندی محلهای خالی و پر كردن آن محلها، از بلوك‌های مجوف و سبك وزن استفاده می‌شود. به این منظور، مصالح پركننده را به فواصل معین روی قالب كف قرار داده و میلگردها را نصب می‌كنند و سپس بتن‌ریزی انجام می‌شود.
در روش دیگر، از قالبهای فلزی و یا پشم‌ شیشه كه به راحتی قابل نصب و جمع‌آوری هستند، استفاده می‌گردد

قالب بندي شناژهاي افقي وعمودي

قالب بندي شناژهاي افقي وعمودي
پس از آماده شدن شناژها قبل از انكه انها را در جاي خود قرار دهند ابتدا با اب سطح پي سنگي را تميز كردند وبه فاصله معين قطعات بتني كوچكي بنام فاصله نگهدار يا لقمه را در زير شناژ ها  قرار دادند.
قطر اين قطعات در حدود 5/2تا3 سانتيمتر بود كه در زير شناژهاي افقي كار گذاشته شد تا اينكه سطح زير شناژها به اصطلاح كارگري بتن خور داشته  باشد.
البته علت اصلي استفاده از فاصله نگهدار ايجاد فاصله مناسب با سطح پي مي باشد تا اين فضاي ايجاد شده توسط بتن پر شود و ميلگردها عملا در بتن  غرق شوند.
بعد از اينكه شناژها در جاي خود مستقر شدند  كار قالب بندي شروع شد كه  سه روز تمام كارگران ارماتوربند مشغول اين كار بودند اما نحوه كار قالب بندي به اين گونه بود كه ابتدا چند تخته نسبتا طويل را كنار همديگر قرار ميدادند  سپس بوسيله تخته هاي زخيم تري كه عمود بر تخته هاي اول
بودند و انها را پشت بند ميگفتند  تخته هاي طويل را ميخ ميكردند.
بدين طريق يك صفحه قالب چوبي ساخته ميشد. تعداد وابعاد پشت بندهاي لازم براي يك صفحه قالب با توجه به ابعاد قالب و نيروهاي وارد بران تعيين ميشد.
بعد از اينكه اين صفحات به اندازه كافي ساخته شد انها را در دوطرف يك شناژ قرار دادند وابتدا با تيرهاي چوبي به اسم مهاري نگه داشته شدند.
نحوه قرار گرفتن اين تيرها بدين شكل است كه  يك سر انها را به بدنه قالب تكيه ميدهند و سر ديگر را بر روي زمين مهار ميكنند .
براي مهار كردن اين قسمت از سر تيرك ان را بوسيله گچ بر روي زمين
محكم كردند.
براي حفظ فاصله مناسب بين صفحات قالب بر روي سر اين صفحات تخته هايي با فاصله هاي مناسب در نظر گرفته شد و بوسيله ميخ محكم كردند.

البته براي محكم كاري بيشتر دو صفحه قالب را به همديگر بوسيله سيم ارماتوربندي محكم بستند . با اتمام اين كار قالب اماده بتن ريزي شد.

پاورپوینتی در رابطه بامدلسازی ، طراحی ، رفتار دیوار برشی

منبع : ایران سازه

 پاورپوینتی در رابطه بامدلسازی ، طراحی ، رفتار دیوار برشی

یک فایل کامل و مناسب با 150 صحفه در حجم نهایی 7.29 مگابایت برای سازه های بلند و مقایسه رفتاری دیوار برشی - باز شو - بادبند ...
ببینید و لذت ببرید...

Behavior, Modeling and Design of Shear Wall-Frame Systems
Naveed Anwar

Asian Center for Engineering Computations and Software, ACECOMS, AIT
Modeling and analysis issues
Transfer of loads to shear walls
Modeling of shear walls in 2D
Modeling of shear Walls in 3D
Interaction of shear-walls with frames

Design and detaining issues
Determination of rebars for flexure
Determination of rebars for shear
Detailing of rebars near openings and corners
Design and detailing of connection between various commonest of cellular shear walls
Due to misleading name “Shear Wall”

The dominant mode of failure is shear

Strength is controlled by shear

Designed is governed primarily by shear

Force distribution can be based on relative stiffness

پارت 1:
http://www.box.net/shared/6mk62j9j3u
پارت2:
http://www.box.net/shared/2cy8ailtm2
پارت3:
http://www.box.net/shared/q3j7asd4tp

لینک مستقیم کمکی:
پارت1 ( حجم فایل 3.3 مگابایت ):
http://parsaspace.com/files/9161228884/shear_wall.part1.rar.html
پارت2 ( حجم فایل 2.7 مگابایت ):
http://parsaspace.com/files/4161228884/shear_wall.part2.rar.html
پسوورد:



مباحث مختلف عمرانی 1

1- دفترچه شماره 1 ارشد 2- دفترچه شماره 2 ارشد 3- DATAIL OF POTSDAMER PLATZ 4- نیکون و لایکا - دوربین - نقشه برداری – کاتالوگ 5-Abnieh86 - 6 SANGIN7 7- مقایسه تعدیل بهای ابنیه سال 86 8- نمونه کارنامه ارشد عمران 9- HADAFMAND – 10 font_kateb 11- فیلم بتن 12- توتال - جزئیات- نقشه برداری - دوربین- کاتالوگ 13- مقایسه تعدیل بهای ابنیه سال 87 ۱۴ -

:: بتن
:: زلزله
:: نقشه برداری
:: نقشه کشی
:: دانلود
:: پل سازی
:: اطلاعات عمومی عمران
:: نمونه سوال ها
:: منابع کنکورها وآزمون ها
:: جزوه وکتاب عمرانی
:: مقاله درباره نماهای ساختمان
:: جزوه مکانیک خاک
:: مجموعه مقالات دانشگاه تهران
:: عکس های زیبا از برج میلاد
:: تصاویر چند ماکت زیبا
:: تشریح کامل مراحل پي سازي
:: مقاله ای درباره مبانی بتن
:: معماری استان اردبیل
:: سازه های ماکارونی
:: مصالح جديد به جاي فولاد
:: زلزله بم
:: روکش ها و کف پوشهاي صنعتي
:: بیانات مقام معظم رهبری
:: راهنماي خريد و نصب كاشي
:: مباحث مختلف درس کاداستر
:: تهران هر روز می لرزد
:: مهندس برتر جوان راه آهن
:: آشنايي با رشته‌هاي عمران
:: درباره سايت بلاگفا
:: آشنایی با Etabs
:: مقالات علمي تخصصي
:: نقشه ساختمانهای
:: نمونه سئوالات آزمون استخدامي
:: تکذیب خبر بزرگترین لاک پشت جهان
:: معبر شیشه ای آسمان
:: بزرگترین لاک پشت جهان در اردبیل
:: دانلود نرم افزار شبیه ساز
:: 29 مقاله مفید و کاربردی قابل دانلود



تعداد کلاس‌های برخوردار از گاز در خراسان شمالی

محمد وحیدی اظهار کرد: بر همین اساس 2 هزار و 459 کلاس درس در مناطق شهری و 776 کلاس درس در مناطق روستایی از سیستم گرمایش بخاری گازی برخوردارند. وی تصریح کرد: تعداد کلاس‌های برخوردار از گاز در خراسان شمالی 3/44 درصد مجموع کلاس‌های درس استان را شامل می‌شود. وحیدی همچنین تعداد کلاس‌های برخوردار از سیستم گرمایشی شوفاژ را دو هزار و 138 کلاس درس عنوان کرد. به گفته وی، یک‌هزار و 401 کلاس درس در مناطق شهری و 538 کلاس در مناطق روستایی خراسان شمالی از سامانه گرمایشی شوفاژ برخوردار هستند.

مدیرکل آموزش و پرورش خراسان شمالی افزود: این تعداد 5/26 درصد کلاس‌های درس استان را شامل می‌شود. وی با اعلام اینکه 3 هزار و 344 کلاس درس در خراسان شمالی هم از سیستم گرمایش بخاری نفتی کاربراتوری استفاده می‌کنند، اظهار کرد: از این تعداد 86 کلاس درس در مناطق شهری و دو هزار و 26 کلاس در مناطق روستایی استان قرار دارند.